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Abstract— The modal decomposition based on the spectra of
the Koopman operator has gained much attention in various
areas such as data science and optimal control, and dynamic
mode decomposition (DMD) has been known as a data-driven
method for this purpose. However, there is a fundamental
limitation in DMD and most of its variants; these methods are
based on the premise that the target system is time-invariant
at least within the data at hand. In this work, we aim to
compute DMD on time-varying dynamical systems. To this end,
we propose a probabilistic model that has factorially switching
dynamic modes. In the proposed model, which is based on
probabilistic DMD, observation at each time is expressed using
a subset of dynamic modes, and the activation of the dynamic
modes varies over time. We present an approximate inference
method using expectation propagation and demonstrate the
modeling capability of the proposed method with numerical
examples of temporally-local events and transient phenomena.

I. INTRODUCTION

Analysis of dynamical systems using the modal decom-
position based on the Koopman operator has gained much
attention in various fields of science and engineering (see,
e.g., [1]) and also has been utilized in the context of control
[2], [3], [4], [5], [6]. Dynamic mode decomposition (DMD)
[7], [8] is a popular method for modal decomposition of
data, which is related to the spectral decomposition of the
Koopman operator under some conditions. However, there is
a fundamental limitation in DMD and most of its existing
variants; these methods are based on the premise that the
target dynamical system can be regarded as a time-invariant
system at least within the data at hand. Hence, the outputs
of most DMD algorithms may not be valid if, for example,
system’s parameters change because of unobserved external
effects. Further, in other cases, because the amount of data
is limited and thus only a limited number of dynamic modes
can be identified, the outputs of DMD tend to be less mean-
ingful when the data contain transient phenomena between
unstable equilibria and attractors or temporally localized
phenomena that rise and fall suddenly.

In this work, we tackle the problem of conducting DMD
on data generated by dynamics that should be regarded as a
time-variant system. Our approach is based on the following
idea; the dynamical system varies over time, but a part of the
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spectral components of the Koopman operator is common
even if the system changes. Consequently, each dynamic
mode should be turned “on” or “off” as time advances, and
only the “on” modes would contribute to the observation
at each time. With this intuition, a dataset is modeled by
a switching dynamical system where the switching state is
factorized into “on-off” states of each dynamic modes. To
this end, we propose a model based on probabilistic DMD
[9] and derive an approximative inference.

The remainder is organized as follows. In Section II, the
technical background is introduced. In Sections III and IV,
details of the proposed method are presented. In Section V,
the relation between the proposed method and similar models
is discussed. In Section VI, numerical examples are shown.
Finally, Section VII concludes the paper.

II. BACKGROUND
First, we briefly introduce the fundamental concepts of

dynamical systems and the Koopman operator for complete-
ness. See, e.g., [10], [1] for details. In this paper, we consider
a discrete-time dynamical system

vi+1 = fi(vi), v ∈M, i ∈ N, (1)

where M is a state space. The Koopman operator at time
index i, Ki, is defined as a composition of fi and an
observable g :M→ C, i.e.,

Kig(v) = g(fi(v)). (2)

In the analysis of dynamical systems based on the Koopman
operator, we utilize its eigenvalues λ ∈ C and eigenfunction
ϕ :M→ C, i.e.,

Kiϕj = λjϕj , (3)

for j = 1, . . . , r′, where r′ may be infinite.
Let (xi,yi) = (g(vi), g(vi+1)) be a pair of snapshots,

where g is an m-dimensional vector-valued observable. Now
assume that the components of g span an r-dimensional
function space that is invariant to the action of Ki, and that
all the eigenvalues of Ki restricted to such space are distinct.
Then, xi and yi can be decomposed as

xi =

r∑
j=1

ϕj(vi)wj and yi =

r∑
j=1

λjϕj(vi)wj

with some vector coefficients wj ∈ Cm, which are termed
the Koopman modes or in DMD’s context, dynamic modes.

DMD [7], [8], [11] can be considered as a data-driven
computation of such decomposition, and in fact, the connec-
tion between DMD and the spectral decomposition of the
Koopman operator has been discussed (see, e.g., [11], [12],



[13], [14]). DMD basically computes the eigendecomposition
of Y X†, where the columns of X comprise x1, . . . ,xn,
and Y is build similarly. Recently, many variants of DMD
have been proposed. For example, extensions of DMD using
nonlinear basis functions [15] or the kernel method [16]
are useful for nonlinear systems. The proposed method in
this work is based on probabilistic DMD [9], which is
a probabilistic model whose maximum-likelihood solution
coincides with the solution of DMD under some conditions.

III. FACTORIALLY SWITCHING DMD

In this work, we developed a probabilistic model for
conducting DMD on time-variant dynamical systems. We
refer to the proposed model as factorially switching DMD
(FSDMD) as each dynamic mode is adaptively turned “on”
and “off,” and the “on-off” states of multiple modes deter-
mine the overall switching state of the system. In this section,
we describe the generative process of data in FSDMD, which
is shown as a graphical model in Figure 1. The inference
procedures are described in the next section.

A. Observation Model

Let (xi ∈ Cm, yi ∈ Cm) be the i-th pair of snapshots
(i = 1, . . . , n). The observation model (likelihood) is

p(xi,yi | χi,ψi) = p(xi | χi)p(yi | ψi), (4)

p(xi | χi) = CNxi

(
Wχi, σ

2I
)
, (5)

p(yi | ψi) = CN yi

(
WΛψi, σ

2I
)
, (6)

where χ,ψ ∈ Cr are latent variables, and r denotes the total
number of dynamic modes. W ∈ Cm×r is a matrix whose
columns comprise dynamic modes, Λ ∈ Cr×r is a diagonal
matrix whose diagonal elements λ = diag(Λ) comprise
eigenvalues, and σ2 is the observation noise variance. We
refer to W , λ, and σ2 as the model parameters and denote
their set by θ. Moreover, CNx (m,V ) denotes the complex
normal distribution on x with mean m and covariance V .
Note that this observation model is almost identical to the
one of probabilistic DMD [9]; the difference between them
lies in the formulation of the latent variables, χ and ψ.

B. Priors

The priors on χ and ψ are defined using the two-level
spike-and-slab model, i.e.,

p (χj,i | ϕj,i, zχ,j,i)
= (1− zχ,j,i) δ(χj,i) + zχ,j,iδ(χj,i−ϕj,i),

(7)

p (ψj,i | ϕj,i, zψ,j,i)
= (1− zψ,j,i) δ(ψj,i) + zψ,j,iδ(ψj,i − ϕj,i),

(8)

p(ϕj,i) = CNϕj,i
(0, 1), (9)

where χj,i denotes the j-th element of χi for j = 1, . . . , r,
and δ(·) is the Dirac delta function. Here, ϕ is a latent vari-
able corresponding to a value of Koopman eigenfunctions.
zχ, zψ ∈ {0, 1} are also latent variables and they control
the “on-off” of each mode at each timestep. For instance,
if zχ,j,i = zψ,j,i = 1, wj is a valid dynamic mode for
the system at time i. If zχ,j,i = zψ,j,i = 0, wj does not
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Fig. 1: Graphical model of FSDMD for two time slices i and
i + 1. The gray nodes are observed random variables, the
white nodes are hidden random variables, and θ denotes the
set of model parameters. The arrows between nodes denote
their dependency. The thick edge between γ indicates the
dependency modeled by GPs.

contribute as a dynamic mode at time i. Furthermore, if
zχ,j,i = 1 and zψ,j,i = 0, the j-th mode turns from “on”
to “off” within the observation interval of the i-th snapshot
pair, and vice versa.

The “on-off” latent variables, zχ and zψ , are usually
not independent because snapshots in a pair are taken at
a fixed interval, and the snapshot pairs are often ordered as
a time-series. Therefore, the priors on zχ and zψ should be
structured according to the underlying dependency. To this
end, we use the formulation of Andersen et al. [17], [18],
with which the Gaussian processes (GPs) are employed for
setting structured priors on zχ and zψ as follows:

p(zj | γj) =

2n∏
i=1

Bzj,i (Φ(γj,i)) , (10)

p(γj) = Nγj
(µj1,Σj) . (11)

Here, zj = [zχ,j,1 zψ,j,1 · · · zχ,j,n zψ,j,n]
T ∈ {0, 1}2n

and γj ∈ R2n. Moreover, Bz(·) represents the Bernoulli
distribution on z, Φ(·) is the CDF of standard normal, and
1 denotes a column vector filled with ones. The mean of
GP, µj ∈ R, determines the bias in z·,j,·, i.e., z tends to be
zero if µj < 0 and tends to be one if µj > 0. Further, Σj

is the covariance matrix of GP, and its (i1, i2)-th element is
determined with the value of a positive semidefinite kernel
kj(i1, i2), where i1 and i2 denote the timestamps of two
snapshots. Basically, the value of µ and the type of k(i1, i2)
should be chosen by the user. Meanwhile, we provide an
empirical Bayes update rule of µ in Section IV.

C. Assumptions for Fast GP Inference

The inference with a general covariance matrix of GP may
be prohibitively slow owing to its inversion. However, in
our case, it can be accelerated by adopting the following
two assumptions. First, suppose that the kernel is translation
invariant, i.e., kj(i1, i2) = k̂j(i2 − i1). Second, suppose that
the snapshot pairs are from an evenly-spaced time-series, i.e.,
xi = g(vi) and yi = g(vi+1) = xi+1, and thus zψ,j,i =



zχ,j,i+1. Consequently, Eqs. (10) and (11) are expressed as

p(zj | γj) = p(z′j | γ′j) =

n+1∏
i=1

Bz′j,i
(
Φ(γ′j,i)

)
, (10′)

p(γj) = p(γ′j) = Nγ′
(
µj1,Σ

′
j

)
, (11′)

with new variables z′ = [zχ,j,1 zχ,j,2 · · · zχ,j,n zψ,j,n]
T ∈

{0, 1}n+1 and γ′j ∈ Rn+1. Under the above conditions, new
covariance Σ′j becomes a Toeplitz matrix, whose inversion
can be carried out with O(m logm) operations [19]. We
assume these conditions unless otherwise stated. Note that
the same benefit is achieved even for datasets generated
from multiple time-series episodes so long as each episode
is evenly spaced because in this case, the covariance is a
block-diagonal matrix with Toeplitz components.

IV. INFERENCE AND LEARNING OF FSDMD

The model parameters in FSDMD can be learned using
an approximative expectation-maximization (EM) algorithm
[20], wherein the E-step and the M-step are iterated until
convergence. We compute the approximate posterior of the
latent variables in the E-step and update the model parame-
ters in the M-step.

A. E-step

In the E-step, the posterior distribution of the latent
variables should be inferred with a fixed θ (and µ) obtained
in the last M-step. Now, the posterior distribution can be
expressed as follows:

p(χ1:n,ψ1:n,ϕ1:n,z
′
1:r,γ

′
1:r | x1:n,y1:n)

=
1

Z

(
n∏
i=1

p(xi | χi)p(yi | ψi)

)

·

(
n∏
i=1

r∏
j=1

p(χj,i | ϕj,i, z′j,i)p(ψj,i | ϕj,i, z′j,i+1)p(ϕj,i)

)

·

(
r∏
j=1

n+1∏
i=1

p(z′j,i | γ′j,i)

)(
r∏
j=1

p(γ′j)

)
, (12)

where Z is the partition function. Since an analytic compu-
tation of this is intractable, we resort to an approximation.
We use the expectation propagation (EP) algorithm [21]
because of the potential superiority of EP for spike-and-slab
priors, as reported in literature [22], [23], [18]. EP leverages
the factorization structure of the posterior such as the one
shown in Eq. (12) by approximating each factor using a site
approximation distribution. Below we describe the concept
of EP and the actual inference procedures for FSDMD.

In EP, we approximate the posterior by another distribution
q, which is defined according to the structure in Eq. (12), i.e.,

q(χ1:n,ψ1:n,ϕ1:n,z
′
1:r,γ

′
1:r) =

1

ZEP

(
n∏
i=1

h̃
(1)
i (χi)h̃

(2)
i (ψi)

)

·

(
n∏
i=1

r∏
j=1

h̃
(3)
j,i (χj,i, ϕj,i, z

′
j,i)h̃

(4)
j,i (ψj,i, ϕj,i, z

′
j,i+1)p(ϕj,i)

)

·

(
r∏
j=1

n+1∏
i=1

h̃
(5)
j,i (z′j,i, γ

′
j,i)

)(
r∏
j=1

p(γ′j)

)
. (13)

Here, terms h̃(1), . . . , h̃(5) are defined using the site parame-
ters of EP, namely, m, V , m, v, c, u, η, ξ, and b as follows:

h̃
(1)
i = CNχi

(
m

(1)
i ,V

(1)
i

)
, h̃

(2)
i = CNψi

(
m

(2)
i ,V

(2)
i

)
,

h̃
(3)
j,i = CNχj,i

(
m

(3)
j,i , v

(3)
j,i

)
CNϕj,i

(
c
(3)
j,i , u

(3)
j,i

)
Bz′j,i

(
Φ
(
b
(3)
j,i

))
,

h̃
(4)
j,i = CNχj,i

(
m

(4)
j,i , v

(4)
j,i

)
CNϕj,i

(
c
(4)
j,i , u

(4)
j,i

)
Bz′j,i

(
Φ
(
b
(4)
j,i

))
,

h̃
(5)
j,i = Bz′j,i

(
Φ
(
b
(5)
j,i

))
Nγ′j,i

(
η
(6)
j,i , ξ

(6)
j,i

)
.

Note that q in Eq. (13) can be expressed in another form,

q(χ1:n,ψ1:n,ϕ1:n,z1:r,γ1:r)

=

(
n∏
i=1

CNχi

(
m̄χ
i , V̄

χ
i

)
CNψi

(
m̄ψ
i , V̄

ψ
i

)
CNϕi

(
c̄i, Ūi

))

·

(
r∏
j=1

Nγj
(
η̄j , Ξ̄j

) n+1∏
i=1

Bzj,i
(
Φ
(
b̄j,i
)))

, (14)

using the global parameters of EP, namely, m̄, V̄ , c̄, Ū ,
η̄, Ξ̄, and b̄, which can be easily computed from the site
parameters of EP (e.g., V̄ χ

i = V
(1)
i + V

(3)
i ) because each

component of the distributions is now in the exponential fam-
ily. These global parameters are utilized in the EP algorithm
and also output as the results of posterior approximation.

Each of the site parameters is updated in turn so that
q approximates the posterior; the updating procedures are
shown in Algorithm 1. We omit the derivation of Algorithm 1
due to limitation of space. Readers can consult [18], wherein
the EP for a model similar to FSDMD is presented in detail.

Algorithm 1 (EP for FSDMD). Given data x1:n,y1:n and
model parameters W ,Λ, σ2, µ obtained at the last M-step,

1) Update the site parameters of h̃(1) and h̃(2) by

(V
(1)
i )−1 = σ−2W HW ,

(V
(1)
i )−1m

(1)
i = σ−2W Hxi,

(V
(2)
i )−1 = σ−2Λ∗W HWΛ,

(V
(2)
i )−1m

(2)
i = σ−2Λ∗W Hyi,

where Λ∗ denotes the complex conjugate of Λ.
2) Update global parameters m̄χ, V̄ χ, m̄ψ , and V̄ ψ .
3) Update the site parameters of h̃(3) and h̃(4) by the

procedures presented in Appendix A.
4) Update global parameters m̄χ, V̄ χ, m̄ψ , V̄ ψ , c̄, Ū ,

and b̄.
5) Update the site parameters of h̃(5) by the procedures

presented in Appendix B.
6) Update global parameters η̄ and Ξ̄.
7) Repeat from Step 2 to Step 6 until convergence.

B. M-step

In the M-step, given the approximate posterior, q, obtained
from the last E-step, the set of model parameters, θ =
{W ,λ, σ2}, is updated by maximizing

Q = Eq [p(x1:n,y1:n,χ1:n,ψ1:n,ϕ1:n, z
′
1:r,γ

′
1:r)] , (15)

where Eq[·] is the expectation with regard to q. Note that,
in the M-step, point estimates (rather than posterior distribu-
tions) of the parameters are obtained. By taking derivatives



of Q with respect to the model parameters and equating them
to zero, we obtain the update rules as follows. First, compute
the following quantities:

Sx =

n∑
i=1

xix
H
i , Sy =

n∑
i=1

yiy
H
i ,

E1 =

n∑
i=1

xi(m̄
χ
i )H, E2 = V̄ χ +

n∑
i=1

m̄χ
i (m̄χ

i )H,

E3 =

n∑
i=1

yi(m̄
φ
i )H, E4 = V̄ ψ +

n∑
i=1

m̄ψ
i (m̄ψ

i )H.

Then, W and λ are updated by

W ← E12 = E1E
−1
2 and (16)

λ←
(
EH

12E12 ◦ET
4

)−1 (
EH

12 ◦ET
3

)
1, (17)

where ◦ denotes the element-wise product of matrices. Using
the new values of W and λ, σ2 is updated by

σ2 ← 1

2nm
tr
(
Sx − 2Re

[
E1W

H
]

+WE2W
H

+ Sy − 2Re
[
E3(WΛ)H

]
+WΛE4(WΛ)H

)
.

(18)

If necessary, a hyperparameter of GP, µj , can also be
updated by

µj ← esum(Σ−1j η̄j)/
(
esum(Σ−1j ) + 1

)
, (19)

where esum(A) is the sum of all the elements of A. This is
helpful when one would like to determine the total number
of dynamic modes automatically from the data.

C. Implementation Tips

Note that in general, the approximative EM algorithm can
only find local solutions. We empirically found that using
the outputs of the standard DMD as the initial value of the
EM was helpful for avoiding meaningless local solutions.
Moreover, note that there is no convergence guarantee for
EP. However, by damping the updates with some forgetting
rate (see, e.g., [20]), good convergence can often be achieved.

V. RELATED WORK

A variant of DMD that is strongly related to the proposed
method is the multi-resolution DMD (mrDMD) [24], in
which DMD computation is recursively performed from the
global signal to the local patches of the signal. We can
extract temporally local modes using mrDMD, but such
modes must be detected within the local patches of the signal.
Because mrDMD segments the signal deterministically, the
local modes may not be sufficiently detectable within each
patch, which possibly poses a challenge in some applications.
In contrast, the proposed method can adaptively determine
the “on-off” of local modes.

The Koopman analysis or DMD for non-autonomous
dynamical systems has been investigated by several other
researchers. Proctor et al. [25] proposed DMD with control,
considering external input signals when computing dynamic
modes. Mezić and Surana [26] considered the analysis based
on the Koopman operator for periodically varying systems.
Maćešić et al. [27] presented a theory on applying DMD

to non-autonomous systems and proposed algorithms that
computes dynamic modes using a local stencil of data.
Note that our approach differs from these previous studies,
especially in terms of the manner of expressing the non-
autonomous nature of dynamics; FSDMD models a time-
variant dynamical system by setting its dynamic modes “on”
or “off” at each time.

Let us introduce other related studies from the viewpoint
of probabilistic modeling of time-series data, which are
mostly from signal processing or machine learning communi-
ties. One line of studies deal with switching linear dynamical
systems (recent studies include [28], [29]; see references
therein), in which states evolve according to one of multiple
transition matrices at each time. Moreover, researchers have
proposed factorial hidden Markov models such as [30], [31],
[32], in which discrete and/or continuous hidden states are
factorized as products of multiple primitive states. Infinite
factorial dynamical models [33] are similar to our model
in the sense that the “on-off” states of hidden dynamics
are considered, but the manner of modeling and the use of
these states are different. These studies will be helpful for
developing more efficient modeling and inference methods
for DMD on time-variant systems.

VI. NUMERICAL EXAMPLES

In this section, we introduce two numerical examples of
FSDMD application. In both examples, we used the Gaussian
kernel k(i1, i2) = s exp((i2 − i1)2/`2) whose parameters, s
and `, were set empirically without any intensive search.

A. Decomposition of Local Waves

The first example is the decomposition of superposed trav-
eling waves. In this example, one of the waves is temporally
local, i.e., it rises suddenly and falls suddenly. Such phenom-
ena should be considered when data may contain unobserved
external effects or rapidly-decaying disturbances. The dataset
used in this example was generated as a superposition of two
decaying traveling waves:

y1 = sin(3x− 2t)e−0.1t and

y2 =

{
sin(2x− 5t)e−0.2t, 1/3π ≤ t ≤ 2/3π,

0, otherwise,

(20)

for x = 2π(j − 1)/120, j = 1, . . . , 120, t = 2π(i− 1)/120,
and i = 1, . . . , 120. The generated traveling waves are
plotted in Figure 2a. The task was to reconstruct these two
component waves from their superposition by estimating the
dynamic modes. We applied the standard DMD and FSDMD
with r = 4 and s = ` = 1.

The waves reconstructed by DMD and FSDMD are shown
in Figures 2b and 2c, respectively. Reconstruction by the
standard DMD is “bumpy” because of the sudden rise and
fall of y2, which is not expected by the standard DMD.
Meanwhile, reconstruction by the proposed model, FSDMD,
is more accurate and the “off” state of y2 is successfully cap-
tured. Moreover, we show the true and estimated eigenvalues
in Figure 3; this figure confirms that FSDMD successfully
identified the eigenvalues of both traveling waves.



(a) (b) (c)

Fig. 2: Traveling waves generated by Eq. (20) or reconstructed by DMDs. The upper plots correspond to the global wave,
y1, and the lower plots correspond to the local wave, y2. (a) True waves used to generate the dataset. (b) Reconstruction by
the standard DMD. (c) Reconstruction by the proposed method, FSDMD.
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Fig. 3: True and estimated eigenvalues of the traveling waves.
The standard DMD fails to estimate the eigenvalues of the
local wave, whereas FSDMD successfully identifies all the
eigenvalues.

B. Analysis of Transient Fluid Flow

The second example is the analysis of the fluid flow behind
a cylinder. It is well known that a repeating pattern of vortices
is formed behind a cylinder in flow, and this pattern is called
a Kármán’s vortex street. It is a limit cycle, and thus, a flow
starting at some state approaches it as time advances. We
generated a dataset by computing the vorticity of the flow
field by a simulation1, which starts at unstable equilibrium
(bottom of Figure 4a) and finally reaches the limit cycle
(top of Figure 4a) via the transient regime between them
(middle of Figure 4a). The size of flow field is 440 × 200,
and we generated 400 snapshots. We analyzed the data using
FSDMD with r = 21, s = 1, and ` = 80. The number of
dynamic modes, r, was chosen empirically for presentation
clarity; similar results were obtained with different r.

1We used COMSOL Multiphysics R© for the simulation.

The estimated eigenvalues are shown in Figure 4b
(wherein complex conjugates are omitted), and the on-off
states of the corresponding dynamic modes are shown in the
upper plot of Figure 4c. The lower plot of Figure 4c shows
the magnitude of the lift coefficient around the cylinder over
time, from which we can see that the flow is transient around
time = 200 and approaches the limit cycle after time = 300.
In Figure 4d, three of the estimated dynamic modes are
shown.

We can notice two interesting points in the results, for
example. First, dynamic mode #1 is activated only around
time = 1. This is intuitive because the mode decays rapidly
(i.e., |λ1| < 1), and its spatial distribution looks correspond-
ing to the unstable equilibrium. Second, some of the dynamic
modes with non-zero frequencies, such as #8, #9, #10 #11,
and #12, are activated in the middle of the transient regime.
In particular, dynamic modes with the higher frequencies are
turned on when the flow is the closer to the limit cycle.

VII. CONCLUSION

In this paper, we have proposed an approach to computing
dynamic mode decomposition for time-variant dynamical
systems. The proposed method is an extension of the proba-
bilistic DMD [9], in which each dynamic mode is associated
with a binary variable that dictates “on-off” of the dynamic
modes. Moreover, the temporal dependency of such binary
variables is modeled using Gaussian process priors. The
inference and learning of the proposed model can be realized
with an approximative EM algorithm, where the posterior is
approximated using the expectation propagation technique.

Several points should be explored in the future. For
example, the automatic determination of the total number of
dynamic modes can be performed more elegantly using the
techniques of Bayesian nonparametrics. Furthermore, a more
efficient inference and learning schemes, including online
ones, should be developed.
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Fig. 4: (a) Three snapshots from the cylinder wake dataset; the flow is at unstable equilibrium at time = 1, the wake is
occurring around time = 200, and finally a Kármán’s vortex street is clearly observed at time = 400. (b) Eigenvalues
estimated by FSDMD, numbered from 1 to 12. Conjugate eigenvalues are omitted for simplicity. (c) The upper plot shows
the estimated on-off states of the dynamic modes from #1 to #12. The lower plot shows the magnitude of the lift coefficient
around the cylinder; from this plot, we can see that the flow is transient around time = 200 and that the flow approaches
the limit cycle after time = 300. The closer the flow approaches the limit cycle, dynamic modes with the higher frequency
appear. (d) Contour plots of three dynamic modes.

APPENDIX

A. Update of Site Approximations (3) and (4)

In this appendix, the procedures for updating the site
parameters of h̃(3)j,i are introduced briefly (the site parameters
of h̃(4) can be updated analogously). See [21] for the general
procedures of EP.

First, compute a cavity distribution:

q̂
\(3)
j,i ∝

q(χj,i, ϕj,i, z
′
j,i)

h̃(3)(χj,i, ϕj,i, z′j,i)
= CNχj,i

(
m̂
\(3)
j,i , v̂

\(3)
j,i

)
· CNϕj,i

(
ĉ
\(3)
j,i , û

\(3)
j,i

)
· Bz′j,i

(
Φ(b̂
\(3)
j,i )

)
,

whose parameters, m̂\(3), v̂\(3) ĉ\(3), û\(3), and b̂\(3) can
be computed easily because all the distributions are in the
exponential family. Next, obtain q∗ such that

q∗ = arg min
q′

DKL

(
q̂
\(3)
j,i p(χj,i | ϕj,i, z′j,i)

∥∥∥ q′) ,
by matching the moments up to the second order. The
moments of q̂\(3)j,i p(χj,i | ϕj,i, z′j,i) (and thus q∗) are

Iz1 = Φ(b̂
\(3)
j,i )CN

m̂
\(3)
j,i

(
ĉ
\(3)
j,i , v̂

\(3)
j,i + û

\(3)
j,i

)
,

I0 = Iz1 + (1− Φ(b̂
\(3)
j,i ))CN 0

(
m̂
\(3)
j,i , v̂

\(3)
j,i

)
,

Iχ1 = Iz1

{
m̂
\(3)
j,i

v̂
\(3)
j,i

+
ĉ
\(3)
j,i

û
\(3)
j,i

}{
1

v̂
\(3)
j,i

+
1

û
\(3)
j,i

}−1
,

Iχ2 = Iz1

{ 1

û
\(3)
j,i

+
1

v̂
\(3)
j,i

}−1
+
Iχ1 Ī

χ
1

(Iz1 )2

 ,

Iϕ1 = Iχ1 + ĉ
\(3)
j,i (I0 − Iz1 ), and

Iϕ2 = Iχ2 + (û
\(3)
j,i + ĉ

\(3)
j,i

¯̂c
\(3)
j,i )(I0 − Iz1 ),

where I0 is the zeroth moment, Iz1 is the first moment with
regard to z′, and the other quantities are analogously defined.

Finally, update h̃(3)j,i by(
h̃
(3)
j,i

)new
∝ q∗

q
\(3)
j,i

,

whose parameters are again easily computed because the
distributions are in the exponential family.

B. Update of Site Approximation (5)

The outline of procedures for updating the site parameters
of h̃(5)j,i is the same with the one for h̃(3) and h̃(4), which is
presented in Appendix A. That is, 1) we compute a cavity
distribution, 2) conduct the moment matching, and 3) update
the site parameters using the computed moments. Below we
show a summary of computations. For the derivation, readers
are recommended to see Section 4.5 of Andersen et al. [18].

First, let q̂\(5)j,i (z′j,i, γ
′
j,i) be the cavity distribution, i.e,

q̂
\(5)
j,i (z′j,i, γ

′
j,i) ∝

q(z′j,i, γ
′
j,i)

h̃
(5)
j,i (z′j,i, γ

′
j,i)

= Bz′j,i
(

Φ(b̂
\(5)
j,i )

)
· Nγ′

j,i

(
η̂
\(5)
j,i , ξ̂

\(5)
j,i

)
Then, compute the moments of q∗ by

Iz1 = Φ(b̂
\(5)
j,i )Φ(α̂

\(5)
j,i ),

I0 = Iz1 + (1− Φ(b̂
\(5)
j,i ))

(
1− Φ(α̂

\(5)
j,i )

)
,

Iγ1 = I0η̂
\(5)
j,i + (2Iz1 − Φ(α̂

\(5)
j,i ))β̂

\(5)
j,i , and

Iγ2 = (1− Φ(b̂
\(5)
j,i ))

{
(η̂
\(5)
j,i )2 + ξ̂

\(5)
j,i

− Φ(α̂
\(5)
j,i )ρ̂

\(5)
j,i

}
+ Iz1 ρ̂

\(5)
j,i ,



where

α̂
\(5)
j,i =

η̂
\(5)
j,i√

1 + ξ̂
\(5)
j,i

,

β̂
\(5)
j,i =

ξ̂
\(5)
j,i · Nα̂\(5)

j,i
(0, 1)

Φ(α̂
\(5)
j,i )

√
1 + ξ̂

\(5)
j,i

,

κ̂
\(5)
j,i =

(ξ̂
\(5)
j,i )2 · α̂\(5)j,i · Nα̂\(5)

j,i
(0, 1)

Φ(α̂
\(5)
j,i )(1 + ξ̂

\(5)
j,i )

,

ρ̂
\(5)
j,i = 2η̂

\(5)
j,i (η̂

\(5)
j,i + β̂

\(5)
j,i ) + (ξ̂

\(5)
j,i − (η̂

\(5)
j,i )2)− κ̂\(5)j,i .

Finally, update h̃(5)j,i by(
h̃
(5)
j,i

)new
∝ q∗

q
\(5)
j,i

.
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