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Abstract— We address the problem of learning multiple dy-
namical systems, which is a kind of multi-task learning (MTL).
The existing methods of MTL do not apply to learning dynami-
cal systems in general. In this work, we develop a regularization
method to perform MTL for dynamical systems appropriately.
The proposed method is based on an operator-theoretic metric
on dynamics that is agnostic of model parametrization and
applicable even for nonlinear dynamics models. We calculate
the proposed MTL-like regularization by estimating the metric
from trajectories generated during training. Learning time-
varying systems can be regarded as a special case of the
usage of the proposed method. The proposed regularizer is
versatile as we can straightforwardly incorporate it into off-
the-shelf gradient-based optimization methods. We show the
results of experiments on synthetic and real-world datasets,
which exhibits the validity of the proposed regularizer.

I. INTRODUCTION

Learning (or identifying) dynamical systems plays a key
role in areas such as data mining, machine learning, and con-
trol. There are several types of dynamics models frequently
appear in these areas. The most conventional yet popular
one is linear time-invariant (LTI) systems, which commonly
appear in control theory (see, e.g., [1]). There is also a line
of research on the use of Gaussian processes for modeling
dynamics [2]. Moreover, the use of deep neural networks has
been intensively studied (see, e.g., [3], [4]).

We frequently encounter problems where we want to learn
multiple dynamical systems, and such problems are often
facilitated with side information. That is, we are to estimate
dynamics not only on a single dataset but also on multiple
datasets respectively, and some additional information on the
relationship between datasets is available. For example, when
learning multiple dynamical systems from measurements of
multiple sets of spatially-distributed sensors, we can utilize
the sensor locations as side information, from which we may
anticipate the similarity between the sets of sensors (and thus
dynamical systems to be learned).

Learning multiple dynamical systems can be regarded as
a kind of multi-task learning (MTL), which has been studied
for a few decades in the machine learning community. When
the target of learning is dynamics, however, the existing
methods for MTL (e.g., [5], [6], [7], [8]) are not technically
suitable, or target types of dynamics models are quite limited,
which raises the need for developing a versatile MTL-like
method for learning dynamical systems.
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In this work, we propose a regularization method to
learn multiple dynamical systems using similarity derived
from side information. The proposed method is based on
an operator-theoretic metric [9] on dynamics, which applies
to nonlinear systems and is agnostic of model parametriza-
tion. The method is suitable for general dynamics learning
problems as long as some mild assumptions are met. The
proposed regularizer is versatile as we can incorporate it
into off-the-shelf learning methods straightforwardly because
the regularizer’s gradients can be computed by a standard
implementation of backpropagation. We show the results
of experiments on synthetic and real-world datasets, which
exhibits the validity of our proposal.

II. RELATED WORK

A popular formulation in MTL is to consider a common
prior distribution on models for a set of related tasks (e.g.,
[7]). In another formulation, models for related tasks are
forced to be similar in the sense of a norm in a function
space [5], [6], [8]. For example, MTL with linear models
is done by making the Euclidean distance of the parameters
proportional to the dissimilarity derived from task related-
ness [6]. However, for nonlinear dynamical systems, such
soft parameter sharing cannot be applied directly because
the discrepancy of model parameters does not necessarily
represent the discrepancy of dynamics.

More generally, use of side information has been studied
in several contexts. Vapnik and Vashist [10] considered priv-
ileged information that is available only in training phases
for support vector machines. Huang et al. [11] developed
a method to impose sparsity of model parameters based
on graph structures of features. There is also a strain of
researches [12], [13], [14] on incorporating knowledge of
feature similarity to supervised learning. Regardless of these
interests, there have been surprisingly few studies on learning
nonlinear dynamical systems with side information.

III. PRELIMINARY

A. Learning Dynamical Systems

We denote a discrete-time dynamical system by

xt+1 = f(xt), (1)

where t ∈ N is a time index, x ∈ M ⊂ Rp is a state vector
in a state space M, and f : M→M is a map on the state
space. We consider to learn f given a set of measurements
of x, i.e., {x1, x2, . . . , xτ}. This is a long-standing problem
in various areas such as economics, machine learning, data
mining, and control. Several types of methods have been
considered in machine learning, such as EM algorithms [15]



and Gaussian processes [2]. Specifically, methods based on
deep neural networks have been attracting attention (e.g.,
[4], [3]). In control theory, there are many studies on system
identification for LTI systems.

B. Operator-Theoretic View on Dynamical Systems

Learning dynamical systems in the state-space formalism
(1) is inherently difficult when f is nonlinear. The operator-
theoretic formalism of dynamical systems [16], [17] is
attracting attention as it enables us to analyze nonlinear
systems using the rich machinery of the linear operator
theory. We also adopt this formalism in this work.

Let us consider an observable function h : M → R in
some Hilbert space H, and consider an operator K such that

Kh(x) = (h ◦ f)(x) = h(f(x)), (2)

where ◦ means the composition of functions. This operator,
K, is often termed the Koopman operator [16]. Because H
is a Hilbert space, K is a linear operator. Using K, we can
analyze a nonlinear dynamical system f through a linear
operator. For example, it is known that the spectral analysis
of K is useful for understanding coherent patterns [17].

Let us restrict H to be a reproducing kernel Hilbert space
(RKHS), and let k : M×M → R be the corresponding
kernel function. Also let φ :M→ H be the corresponding
feature map. Now define another operator Kf such that

Kfφ(x) = φ(f(x)). (3)

In fact, this Kf is the adjoint of K, namely the Perron–
Frobenius operator in RKHS (see, e.g., [9]).

C. Metrics on Dynamical Systems

For measuring similarity between dynamical systems, sev-
eral types of methods have been proposed. Martin [18] de-
fined a metric on ARMA models, and De Cock and De Moor
[19] extended it to linear state-space models using subspace
angles between observability matrices. Vishwanathan et al.
[20] proposed a family of kernels known as Binet–Cauchy
kernels that can be used for dynamical systems. For non-
linear systems, researchers have proposed metrics based on
the operator-theoretic formalism. For example, Fujii et al.
[21] developed an extension of the Binet–Cauchy kernels
using the spectral decomposition of the Koopman operator.
Ishikawa et al. [9] proposed a metric on nonlinear dynamical
systems with a rigorous theoretical background.

In this work, we adopt the metric proposed by Ishikawa
et al. [9]. The advantages of this metric are as follows: 1)
it can be applied to nonlinear systems, 2) it is agnostic of
the parametric forms of dynamics models, and 3) it can be
estimated with trajectories generated from target dynamics.
Below we review its definition and computation.

Let f1 and f2 be the maps of two dynamical systems, and
let X init

1 and X init
2 , respectively, be the sets of initial con-

ditions for them. Using the notion of the Perron–Frobenius
operator in RKHS, (i.e., Kf in (3)), Ishikawa et al. [9] define

a positive definite kernel kPF as
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∧
m denotes the m-th exterior product, Lh is a linear

operator defined according to an observable h, and I1 and
I2 are operators defined according to the initial conditions,
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where km,TPF,(1,2) means km,TPF ((f1,X
init
1 ), (f2,X

init
2 )) and so on.

As long as f ’s are semi-stable (non-diverging) [9], kPF
can be estimated from trajectories. For simplicity, consider
the case of m = 2 and X init

j = {x(j,1)0 , x
(j,2)
0 }. Let
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T ) be a trajectory from fj initialized with
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(j,l)
0 , for l = 1, 2 and j = 1, 2. The value of kPF

can be estimated from such trajectories [9] as
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Here recall that k(x, x′) (that is different from kPF) is some
kernel function (e.g., Gaussian kernel) on x, x′ ∈M.

IV. PROPOSED METHOD

We first formalize our problem and then give the details of
the proposed method. We add discussion via a special case
that admits an analytical computation of the method.

A. Problem Setting

We consider a problem to learn multiple dynamical sys-
tems from multiple datasets, where some side informa-
tion that encodes the relationship between the datasets is
available. More formally, we learn n dynamical systems
f1, . . . , fn given n datasets D1, . . . ,Dn, where each dataset
Di is a pair of a sequence and side information:

Di :=
{

(x
(i)
1 , . . . , x(i)τi ), Zi

}
. (7)

Here, x(i)t ∈ Rp is the t-th snapshot of the i-th sequence, and
τi ∈ N is the length of the i-th sequence. Zi ∈ Z denotes
some side information, and it can take many forms, e.g.,
scalars, vectors, or matrices of numeric and/or categorical
values, as long as a dissimilarity function on Z can be
computed. We denote a dissimilarity function on Z by

dZ(Z,Z ′) : Z × Z → R≥0, (8)

and we assume that it fulfills the following properties:
dZ(Z,Z ′) = dZ(Z ′, Z) and Z = Z ′ ⇔ dZ(Z,Z ′) = 0.



B. Proposed Method

We propose the regularizer that will be defined in (10). It
is computed via (11), (13), and (14), based on trajectories
(12) generated from models being learned.

1) General Formulation: Our idea is as follows; to fa-
cilitate learning dynamical systems using side information,
we impose regularization such that the dissimilarity between
fi and fj follows the dissimilarity derived from the side
information. Similar ideas have also been adopted in the
well-known methodologies of MTL [5], [6], [8], but they are
not for dynamical systems. Suppose that learning fi on Di
is originally performed via solving an optimization problem:

minimize
fi

Li
(
fi; (x

(i)
1 , . . . , x(i)τi )

)
(9)

with some loss function Li. We regularize (9) as follows.

Definition 1. Let Li be the original loss function to learn
dynamical system fi on data Di. Let dDS be some dissimilar-
ity measure of dynamical systems. Suppose dZ(Zi, Zj) > 0
for every pair (i, j) of i 6= j. The regularized problem is

minimize
f1,...,fn

1

n

n∑
i=1

Li
(
fi; (x

(i)
1 , . . . , x(i)τi )

)
+

λ

n(n− 1)

n∑
i=1

n∑
j>i

Ri,j , (10)

where λ ≥ 0 is the regularization hyperparameter, and

Ri,j := dDS
(
fi, fj

)
/ dZ(Zi, Zj). (11)

Remark 1. This formulation is agnostic of the parametric
forms of f , and models fi and fj (i 6= j) can even have
different parametric forms. When a pair s.t. i 6= j and
dZ(Zi, Zj) = 0 exists, we simply learn fi on Di and Dj .

Definition 1 is an abstract formulation, so we have to
define f , L, dDS, and dZ in practice. Whereas f and L are
chosen in accordance with the base problem, we must design
dDS and dZ appropriately. In the following, we introduce
our proposal to use the operator-theoretic metric for dDS.
Afterward, we provide examples of dZ in some use cases.

2) Choice of dDS: To make the proposed regularized
learning problem feasible, we pose two mild assumptions:

Assumption 1. For i = 1, . . . , n, model fi is parameterized
with a set of parameters θi, and the gradients of fi(x) with
regard to θi can be computed for every x ∈M.

Assumption 2. Models f1, . . . , fn are semi-stable [9].

Remark 2. Informally, the semi-stability of f means that
trajectories generated from f do not diverge. It is not
obviously satisfied in every case, but empirically, f remains
semi-stable during training when data do not diverge, and
the magnitude of f ’s parameters are in a reasonable range.

Under these assumptions, we propose to exploit the
operator-theoretic metric [9], namely dPF in (5), for dis-
similarity measure dDS in (11). This metric is advantageous
mainly because of two reasons. First, it can be computed

from trajectories of dynamical systems, and thus in practice,
we can adopt gradient-based optimization as long as k in
(6) is differentiable (at least almost everywhere). Second,
the metric applies to any parametric forms of semi-stable
dynamical systems, so we can regularize f ’s even if we do
not know the semantics of their parametrization, which is
usually the case with nonlinear models such as neural nets.

Here we present the actual procedures to use dPF for dDS.
For ease of discussion, we fix m = 2 and let X init

i =

{x(i,1)0 , x
(i,2)
0 }, which was empirically satisfactory. When

computing the gradient of the objective of (10), we generate
trajectories of length σ using fi and fj with initial conditions
in X init

i and X init
j , respectively. That is, we generate four

trajectories in an evaluation of gradient, and one of them is

Yi,1 :=
(
y(i,1)s =fsi

(
x
(i,1)
0

) ∣∣∣ s = 1, . . . , σ
)
, (12)

where fs means the action of f for s times. Other three,
Yi,2, Yj,1, and Yj,2 are defined analogously. Given such
trajectories, we can compute an empirical value of kPF as

k̂PF,(i,j) =

σ∑
s1=1

σ∑
s2=1

(
k(y(i,1)s1 , y(j,1)s1 )k(y(i,2)s2 , y(j,2)s2 )

− k(y(i,1)s1 , y(j,2)s2 )k(y(i,2)s2 , y(j,1)s1 )
)
, (13)

where k is a differentiable kernel function on M. We then
compute an empirical estimation of the metric as

d̂PF,(i,j) =
√

1− k̂2PF,(i,j)/k̂PF,(i,i)/k̂PF,(j,j). (14)

Each summand of the regularizer (i.e., Ri,j in (11)) can
be computed by substituting d̂PF for dDS. As long as k is
differentiable, the gradient of Ri,j is also computed easily
by backpropagation because Ri,j comprises only arithmetic
operations on trajectories Y . Hence, when the original prob-
lem is solved with a gradient-based optimizer, the regularized
one can also be solved using the same optimizer.

The computation of the regularization term needs
O(pn2σ2) operations. To reduce the computational cost, it
is effective to reduce n by ignoring Ri,j for pairs whose
dZ(Zi, Zj) is large. We empirically found that σ does not
have to be too large, and a large σ might even be harmful for
performance. It is probably because a model cannot generate
meaningful long trajectories when the training is in progress.

Metric dPF depends on the initial conditions [9]. In our
application, however, such dependence should be eliminated
because we want to compare dynamical systems regardless
of their initial conditions. To this end, in computing d̂PF,(i,j)

in (14), we use two common initial conditions, x(i,j,1)0 and
x
(i,j,2)
0 . That is, we set X init

i = X init
j = {x(i,j,1)0 , x

(i,j,2)
0 }.

Consequently, d̂PF,(i,j) only depends on the choice of x(i,j,1)0

and x(i,j,2)0 . This dependence can further be eliminated (only
roughly, though) by randomly choosing them multiple times
during training. However, in the numerical examples in
Section V, we simply fixed x

(i,j,1)
0 and x

(i,j,2)
0 to be x

(i)
1

and x
(j)
1 (the first snapshots of each dataset), respectively,

which we found was not problematic empirically.



3) Use Cases: The type of side information, Z , and the
dissimilarity function, dZ , are defined in accordance with a
given application. Below we show two examples.

a) Multi-dynamics learning: The principal focus of the
proposed regularizer is to learn multiple dynamical systems.
A typical example is to learn dynamics on data from spatially
distributed sensors; in this case, Zi refers to the location of
the i-th set of sensors, and dZ denotes the distance between
the sensor locations. Another example is to learn dynamics of
human motion for multiple subjects, in which some physical
properties (e.g., heights and weights) of the subjects are
available as side information to anticipate dissimilarity be-
tween the subjects. Furthermore, any other types of descrip-
tions (e.g., texts), can also be used for evaluating relatedness
between dynamics. The proposed method is applicable even
if the parametrizations of dynamics models are different
from each other. This is useful, for example, when model
architecture searches are run for each task independently.

b) Time-varying dynamical systems: Learning a time-
varying dynamical system can be regarded as a special
case of multi-dynamics learning, though it is not literally
“multiple” dynamical systems. Let {x̄1, . . . , x̄T+1} be a
time-series dataset of length T + 1 and suppose to learn

x̄t+1 = fi(t)(x̄t), for t = 1, . . . , T, (15)

where i : {1, . . . , T} → {1, . . . , n} (n ≤ T ) is a function that
represents the transition timing of the time-varying system.
As learning f1, . . . , fn can become severely ill-posed when
n ≈ T , it is indispensable to impose a regularization, for
example, to make the dynamics change gradually along time.
We can cast this problem as a special case of the proposed
formulation. Consider the most extreme case, i.e., n = T
and i(t) = t. For this case, we redefine datasets as

Di =
{

(x̄i, x̄i+1), Zi = i
}
, for i = 1, . . . , T,

and set the dissimilarity on Z = {1, . . . , T} as

dZ(Zi = i, Zj = j) =

{
1, for j = i+ 1,

∞, otherwise.
(16)

C. Special Case: Learning Stable LTI Systems

Consider learning LTI systems

x
(i)
t+1 = Aix

(i)
t , Ai ∈ Rp×p,

for i = 1, . . . , n, where Ai is stable, that is, ρ(Ai) < 1.
For stable linear systems, it is known [9] that the operator-
theoretic metric, dPF, coincides with the metric based on the
subspace angles between the extended observability matrices
of systems [19]. Let Oi be the extended observability matrix
corresponding to Ai, that is, Oi := [I Ai A

2
i · · · ]T, and let

Ci be the column space of Oi. A metric based on O can be
defined via the projection kernel (see, e.g., [22]):

kproj(Ai, Aj) := trace(PCiPCj ),

where PC := O(OTO)−1OT is the projection operator onto
C. The corresponding metric, namely dproj, is

d2proj(Ai, Aj) := 1− p−2k2proj(Ai, Aj),

where we used the fact kproj(A,A) = p. We can use dproj,
which is equivalent to dPF in this case, as dDS in (11).

It is known that a matrix Gi,j := OT
i Oj can be computed

by solving a Sylvester equation:

AT
i Gi,jAj −Gi,j + I = 0.

Consequently, we can compute the values of kproj analyti-
cally. The gradients of dproj can be computed similarly via
solving Sylvester equations, but we omit the details here
(see, e.g., [22]). Note that an exact solution of a Sylvester
equation requires O(p3) operations, where p denotes the
dimensionality of each snapshot. For large p, we should
resort to some iterative methods for the Sylvester equations
or dimensionality reduction of data as preprocessing.

For discussion, let us also consider the extreme case of
p = 1, where we denote Ai and Aj by ai and aj ∈ R,
respectively. In this case, dproj becomes

d2proj(ai, aj) = (ai − aj)2/(1− aiaj)2.

We see that in p = 1, dproj emphasizes differences of
dynamics in the small decay rate region (a ≈ 1). The
proposed method naturally implicates such a behavior as in
this special case, whereas the existing methods do not.

V. NUMERICAL EXAMPLES

A. Datasets and Side Information

We used the following four datasets with side information.
a) Van der Pol oscillator: We synthesized data (termed

VDP hereafter) by numerically solving ẍ−µ(1−x2)ẋ+x =
0, which is known as the Van der Pol oscillator. The data
comprise trajectories of x = [x ẋ]T. As VDP, we created
five datasets with µ = 1.0, 1.5, 2.0, 2.5, 3.0, each of
which was processed as follows. First, using MATLAB’s
ode45 with x0 = ẋ0 = 1, ∆t = 0.05, we generated a
trajectory of length 800. Within the trajectory of length 800,
we used (x1, . . . , xτVdP) as a training set, (x401, . . . , x600) as
a validation set, and (x601, . . . , x800) as a test set. We set
τVdP = 40. We added noise generated independently from
N (0, 10−4) only to the training sets. As side information, we
set dZ = 1 for adjacent µ values (e.g., Dµ=1.0 and Dµ=1.5)
and dZ =∞ otherwise.

b) Rössler system: We created data (termed RÖSSLER)
by numerically solving the Rössler system:

ẋ =

 −[x]2 − [x]3
[x]1 + a[x]2

b+ [x]3([x]1 − c)

 .
As RÖSSLER, we created five datasets with parameters c = 4,
5, 6, 7, 8, whereas a = b = 0.1 were fixed. Each dataset was
processed similarly to the VDP dataset. The length of the
training set, τRössler, was varied within {24, 32, 40, 48}. Note
that with the above values of a, b, c, the Rössler system is
not chaotic. As side information, we set dZ = 1 for adjacent
datasets (e.g., Dc=4 and Dc=5) and dZ =∞ otherwise.



TABLE I
TEST SET LOSS. AVERAGES (AND STANDARD DEVIATIONS) FOR 20 RANDOM TRIALS ARE DISPLAYED.

(A) only
weight decay

(B) weight decay
+ Euclid. reg.

(C) weight decay
+ fused lasso

(D) weight decay
+ proposed reg.

VDP 2.936 (.56)× 10−1 2.402 (.82)× 10−1 2.659 (.51)× 10−1 2.272 (.71)× 10−1

RÖSSLER 1.358 (.05)× 10−2 1.359 (.05)× 10−2 1.358 (.05)× 10−2 1.319 (.05)× 10−2

SOLAR 9.231 (.01)× 10−4 9.229 (.01)× 10−4 9.226 (.01)× 10−4 9.101 (.03)× 10−4

DEMAND 1.486 (.03)× 10−3 1.487 (.03)× 10−3 1.488 (.03)× 10−3 1.439 (.03)× 10−3

Significant difference, bold: from (A) / underline: from (B), by paired t-test at p < 10−3.

c) Solar power production data: We used the solar
power production data1 (termed SOLAR) of plants in Al-
abama. As SOLAR, we prepared 28 datasets by selecting 28
power plants of type DPV, whose latitude was from 33.15◦

to 33.75◦ and longitude was from −87.05◦ to −86.55◦. We
used the data from 1 June 2016 to 20 June as training sets, the
data from 21 June to 25 June validation sets, and the data
from 25 June to 30 June as test sets. We subsampled the
original sequence (measurements of every five minutes) by
1/3, computed the moving average of width 4 (= an hour),
and normalized so that the minimum and the maximum
values become 0 and 1, respectively. Finally, we regarded
every 24 measurements (= six hours) as a 24-dimensional
snapshot x. The sizes of the training, validation, and test sets
were 80, 20, and 20, respectively. As side information, we
used the geometric distances between the power plants.

d) Electricity demand data: We used the electricity
demand data2 (termed DEMAND) in Tokyo from 2016 to
2018. We normalized the data so that the maximum value
becomes 1. The original sequences were hourly records, and
we subsampled them by 1/3 and treated measurements in
every 12 hours as a four-dimensional snapshot x. We used
the three years’ sequences spanning 32 weeks from April to
December (because the data from January to March 2016
were missed). We partitioned each sequence into consequent
four datasets, so it is like we learn a time-varying dynamical
system that changes every eight weeks. We used data in
2016, 2017, and 2018 as training, validation, and test sets,
respectively. As side information, we set dZ as in (16); that
is, this dataset corresponds to the special case of learning
time-varying dynamics, presented in Section IV-B.3.

B. Settings

a) Model and loss: For f , we used multilayer percep-
trons with one hidden layer and tanh activation function.
The size of the hidden layer was 32 for VDP, RÖSSLER, and
DEMAND datasets, and 64 for SOLAR dataset. We optimized
the model with the mean squared loss using gradient descent
with an adaptive learning rate (Adam) [23].

b) Baselines: While there are no existing methods
that have the same objective with ours, we compared the
proposed method to the following three baseline settings,

1www.nrel.gov/grid/solar-power-data.html
2www.tepco.co.jp/en/forecast/html/download-e.html

(A)–(C). The first baseline (A) is learning only with weight
decay (i.e., L2 regularization on parameters). The second
baseline (B) is the regularization based on Euclidean distance
of parameters, that is, we use

dEuclid(fi, fj) =
1

m

m∑
`=1

|θi,` − θj,`|2

as dDS in (11). Here θi,` ∈ R denotes the `-th parameter of
fi, and m is the number of parameters in fi. We refer to this
baseline as “Euclidean regularization.” The third baseline (C)
is similar to fused lasso [24], that is, we use

dfused-lasso(fi, fj) =
1

m

m∑
`=1

|θi,` − θj,`|

as dDS in (11), instead of the L2 norm in (B).
c) Proposed method: For the kernel k on state space,

which appeared on the right-hand side of (13), we used the
Gaussian kernel with the bandwidth chosen by the median
heuristics. We set the length of generated trajectories to be
σ = 4 unless otherwise stated. In every setting, the regular-
ization parameter λ (both for the baselines and the proposed
regularizer) was chosen according to the validation loss.
We ran experiments with each configuration for 20 random
trials, where the randomness involves the initialization and
the artificial noise added to training data.

C. Results

a) Evaluation by test loss: In Table I, we show the
loss values on test sets (the smaller, the better). Note that
the results on the RÖSSLER dataset are shown only for the
case of training set size τRössler = 40. We can observe that,
while (B) the Euclidean regularization and (C) the fused lasso
regularization do not necessarily improve the performance,
(D) the proposed regularization method consistently achieves
smaller test loss values.

b) Changing training set size: We also calculated the
rates of improvement in the test loss compared to the case
without a structured regularizer, i.e., (improvement rate) =
(LA − LD)/LA, where LA and LD denote the test loss in
the two cases (A) and (D) listed in the top of Table I,
respectively. In Figure 1, the improvement rates on the
RÖSSLER dataset are shown for different sizes of training
set. This result implies that the impact of the proposed
regularizer is particularly notable when the training set is
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Fig. 2. Test loss on VDP dataset with
different σ. The dashed line shows the
average performance of the case (A)
weight decay only.

small. It is advantageous because in many practices of
learning dynamical systems, gathering much data is the most
expensive (and often infeasible) part of applications.

c) Changing trajectory length: We examined the ef-
fects of varying the length of trajectories generated and used
by the proposed regularizer (i.e., σ in (12)). In Figure 2, we
show the test loss values on the VDP dataset for a random
trial under the same setting except σ; we changed σ from 1
to 10. We can see that a larger σ achieves better performance
in σ ≤ 6, but the performance even deteriorates in σ > 6 in
this trial. There were some successful trials with σ > 6 in
other trials, but the improvement was marginal with a large
σ. This is probably because a model whose learning is still
in progress cannot generate meaningful long trajectories. As
the generation capability of a model improves as learning
proceeds, changing σ adaptively may improve performance,
which should be elaborated in the future.

d) Runtime: We examined the runtime using an Intel
Xeon Gold 6148 processor, DDR4 2400MHz 256GB RAM,
and the implementation based on PyTorch 1.1.0. For a trial
to learn the model on DEMAND dataset (i.e., n = 28), it
took 3.9 seconds for 1, 000 iteration without the proposed
regularizer, whereas it took 46 seconds for the same number
of iterations with the proposed regularizer.

VI. CONCLUSION

In this work, we developed a regularization method for
learning multiple dynamical systems with side information.
We used the metric on dynamical systems [9], which is
applicable to nonlinear dynamics and is agnostic of model
parametrization. We proposed to estimate the metric using
trajectories generated from models being learned and to
use it for the regularization. Because the gradients of the
proposed regularizer can be computed using an off-the-shelf
implementation of backpropagation, it can be incorporated
into existing methods of learning dynamical systems, such
as ones based on gradient-based optimization.

A possible limitation of the proposed method (and many
other MTL-like methods) lies in the computational burden
in large n, that is, the number of tasks involved. In order
to scale to a large n, we have to develop some techniques,
e.g., a way to efficiently prune side information. Moreover,
the proposed method should be generalized to controlled
systems, stochastic systems, and continuous-time systems.
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