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ABSTRACT

Dynamic mode decomposition (DMD) is a method to extract
coherent modes from nonlinear dynamical systems. In this
paper, we propose an extension of DMD, sparse nonnega-
tive DMD, which generates a nonlinear and sparse modal
representation of dynamics. In particular, this makes DMD
more suitable for video processing. We reformulate DMD
as a block-multiconvex optimization problem to impose con-
straints and regularizations directly on the structures of the
estimated dynamic modes. We introduce the results of exper-
iments with synthetic data and a surveillance video dataset
and show that sparse nonnegative DMD can extract part-
based dynamic modes from video streams.

Index Terms— Dynamic mode decomposition, dynami-
cal systems, sparse modeling, nonnegative decomposition

1. INTRODUCTION

Dynamic mode decomposition (DMD) [1, 2, 3] is a method
to extract coherent modes from numerical data generated by
nonlinear dynamical systems. Recently, DMD has been uti-
lized in various areas including fluid mechanics [4], neuro-
science [5], epidemiology [6], robotic control [7] and analy-
ses of power systems [8]. DMD is also a useful tool for video
processing because it can extract a set of modes from a video
stream according to their dynamical characteristics, i.e., tem-
poral decay rates and frequencies. In fact, Kutz et al. [9]
utilized DMD for background/foreground separation of video
streams by extracting static low-frequency dynamic modes as
the background. In addition, Erichson et al. [10] proposed the
use of DMD with compressed sensing for the fast background
separation of video streams.

For video processing, DMD becomes more attractive if
it can compute dynamic modes that take nonnegative values
because such modes can be easily inspected and understood
due to the inherent nonnegativity of video data. Moreover,
obtaining sparse part-based dynamic modes is important for
a meaningful representation of video streams. While there
have been proposed many algorithmic variants of DMD in-
cluding low-rank approximation [11, 12, 13, 14, 15] and noise
correction [16], none of them can explicitly impose nonnega-
tivity and sparsity on the structures of the estimated dynamic

modes. In this paper, we propose to reformulate DMD as a
block-multiconvex optimization problem so as to impose the
nonnegativity constraint and the sparsity regularization on dy-
namic modes. Using the proposed sparse nonnegative version
of DMD, we can decompose a video stream into part-based
modes as shown in Section 4. This is analogous to the well-
known results of the part-based image decomposition by non-
negative matrix factorization (NMF) [17], but an important
difference of DMD from NMF is that DMD extracts modes
related to the dynamics behind data.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the theory of DMD. In Section 3,
the details of the proposed method are described. In Section 4,
the experimental results are shown. This paper is ended with
conclusions in Section 5.

2. BACKGROUND

DMD can be regarded as a data-driven algorithm for spec-
tral decomposition of Koopman operator [18], with which the
analysis of nonlinear systems is lifted to a linear regime. We
briefly review this theory in the following, while we recom-
mend to consult literature such as [19] for more details.

Consider a (possibly, nonlinear) dynamical system

xt+1 = f(xt), x ∈M,

where f :M→M,M is the phase space, and t is the time
index. The Koopman operator K on this system is defined as

Kg(x) = g(f(x)),

where g : M → C ∈ G denotes observables in a function
space G. Note that K is linear but infinite-dimensional.

Here, suppose that there exists a subspace of G that is in-
variant to K, and let us denote such subspace by G ⊂ G. Fur-
ther assume that G is finite-dimensional and a set of observ-
ables {g1, . . . , gn} spans G, and let g =

[
g1 . . . gn

]T
:

M→ Cn. Then, the one-step evolution of g is expressed as
Kg(x) = g(f(x)), where K is the restriction of K to G and
is a finite-dimensional linear operator.

Let us denote the eigenfunction of K by ϕ : M → Cn

and the eigenvalue by λ ∈ C, i.e., Kϕ(x) = λϕ(x). If all



Algorithm 1: DMD [2, 20]
Data: Y0 and Y1 defined in Eq. (2)
Result: dynamic modes w and eigenvalues λ

1 Ur,Sr,Vr ← compact SVD of Y0;
2 Ã← UH

r Y1VrS
−1
r ;

3 w̃, λ← eigenvector and eigenvalue of Ã;
4 w ← λ−1Y1VrS

−1
r ;

5 return w, λ;

the eigenvalues are distinct, any values of g are expressed as

g(x) =

n∑
i=1

ϕi(x)ξi,

with some coefficients {ξi}. From the definitions, we have

g(xt) =
n∑

i=1

λtiwi, wi = ϕi(x0)ξi, (1)

where g is decomposed into a sum of modes {w1, . . . ,wn},
and the modulus and the argument of λi express the decay rate
and the frequency of wi, respectively. In contrast to the clas-
sical modal decomposition of linear time invariant systems,
the decomposition of the Koopman operator can be applied to
nonlinear systems and it often focuses on the spatial distribu-
tion of the eigenfunctions.

DMD is a method to compute such decomposition from
numerical data. Suppose we have data matrices:

Y0 =
[
g(x0) . . . g(xm−1)

]
∈ Cn×m and

Y1 =
[
g(x1) . . . g(xm)

]
∈ Cn×m.

(2)

The well-known algorithm of DMD [2, 20] is shown in Algo-
rithm 1. If the component of g spans G, the dynamic modes
computed by Algorithm 1 converge to w in Eq. (1) in the
large sample limit. Note that the important premise of DMD
is that we have g whose component spans an (approximately)
invariant subspace. While there are some extension of DMD
to address this issue (for example, the use of nonlinear basis
functions [21], reproducing kernels [22], and delay coordi-
nates [23, 24]), we simply assume that the data are generated
with an observable that spans an approximately invariant sub-
space, as in the several previous studies on DMD.

3. PROPOSED METHOD

3.1. DMD as a block-multiconvex problem

We reformulate DMD as a block-multiconvex optimization
problem, which enables us to impose constraints and regular-
izations directly on the structures of the estimated dynamic
modes. In the sequel, we use the polar-coordinate expression
for dynamic modes and eigenvalues, i.e.,

[wi]d = qi,d exp(jθi,d), qi,d, θi,d ∈ R,
λi = ri exp(jφi), ri, φi ∈ R,

(3)

Algorithm 2: DMD as a block-multiconvex problem
Data: Y defined in Eq. (5) and the number of modes n′

Result: dynamic modes q, θ and eigenvalues r, φ
1 q0, θ0, r0, φ0 ← initialization by Algorithm 1;
2 for k = 1, 2, . . . do
3 qk ← arg minq h(q, θk−1, rk−1, φk−1;Y );
4 θk ← arg minθ h(qk, θ, rk−1, φk−1;Y );
5 rk ← arg minr h(qk, θk, r, φk−1;Y );
6 φk ← arg minφ h(qk, θk, rk, φ;Y );
7 if converge then return qk, θk, rk, φk ;
8 end

where j is the imaginary unit, and [wi]d denotes the d-th ele-
ment of wi. In a matrix form,1 we define

W = Q�Θ, [Q]i,d = qi,d, [Θ]i,d = exp(jθi,d),

V = R�Φ, [R]i,t = rt−1
i , [Φ]i,t = exp(j(t− 1)φi),

for i = 1, . . . , n′, d = 1, . . . , n, t = 1, . . . ,m+ 1,

where W = [w1, . . . ,wn′ ], V is a Vandermonde matrix with
{λ1, . . . , λn′}, and n′ is a hyperparameter that denotes the ef-
fective number of dynamic modes. Following the decompo-
sition in Eq. (1), the objective function to be minimized is

h(q, θ, r, φ;Y ) =
1

2
‖Y − (Q�Θ)(R�Φ)‖2F , (4)

where Y is the full-data matrix defined as

Y =
[
g(x0) . . . g(xm)

]
∈ Cn×(m+1). (5)

Since h is a block-multiconvex function [25] with regard
to q, θ, r, and φ, its local minimum is easily obtained by a
block coordinate descent. The pseudocode is shown in Al-
gorithm 2. The update of each block (at Lines 3–6) can be
performed with any solver, and we used the L-BFGS method
[26] with gradients of h as follows:2

∂h

∂qi,d
= −Re

[
DV H [Θ̄]

i,d

]
i,d
,

∂h

∂θi,d
= − Im

[
DV H [Θ̄]

i,d

]
i,d

[Q]i,d ,

∂h

∂ri
= −Re

[
tr
(
DTW̄

(
Oi � Φ̄

))]
,

∂h

∂φi
= − Im

[
tr
(
DTW̄

(
R�Mi � Φ̄

))]
,

where D = Y − WV . In addition, the i-th row of
Oi ∈ Rn′×(m+1) is

[
0 1 2ri . . . mrm−1i

]
and the

other elements are zero. The i-th row of Mi ∈ Rn′×(m+1) is[
0 j 2j . . . mj

]
and the other elements are zero.

1� denotes element-wise multiplication.
2 ·̄ denotes complex conjugate and ·H denotes conjugate transpose.



Algorithm 3: Sparse nonnegative DMD
Data: Y defined in Eq. (5) and the number of modes n′

Result: dynamic modes q and eigenvalues r, φ
1 q0, θ0, r0, φ0 ← initialization by Algorithm 1;
2 θ0 ← 0;
3 for k = 1, 2, . . . do
4 qk ← arg minq f(q, rk−1, φk−1;Y );
5 rk ← arg minr f(qk, r, φk−1;Y );
6 φk ← arg minφ f(qk, rk, φ;Y );
7 if converge then return qk, rk, φk ;
8 end

3.2. Sparse nonnegative DMD

Using the reformulation, we can impose constraints and/or
regularizations directly on variables q, θ, r, and φ. Our pur-
pose is formulating sparse nonnegative DMD (SN-DMD) by
imposing the nonnegativity constraint and the L1 regulariza-
tion3 on the dynamic modes, i.e., q is constrained to be non-
negative, θ is fixed to be zero, and a regularization term γ|q|
is introduced into the objective function. Formally, the new
objective function f is given as

f(q, r, φ;Y ) = h(q, 0, r, φ;Y ) + g(q),

g(q) = γ

n′∑
i=1

n∑
d=1

|qi,d|+ Iq≥0(q),
(6)

where h is defined in Eq. (4), γ is a regularization parameter,
and Iq≥0(q) is an indicator function whose value is 0 when
q ≥ 0 and +∞ otherwise. The pseudocode for SN-DMD
using the block coordinate descent is shown in Algorithm 3.
To solve the update step at Line 4, we utilize the proximal
Newton-type method with an L-BFGS Hessian approxima-
tion [27]. The updates of the other quantities (at Lines 5–6)
are computed in the same manner as in Algorithm 2.

4. EXPERIMENTS

4.1. Mode extraction from noisy data

To investigate the performance of SN-DMD, we conducted an
experiment with synthetic data as follows. First, we generated
a sequence of noisy images {yt ∈ R64×64} by the following
equations for t = 0, . . . , 15:

zt = 0.99tw1 + 0.9tw2, yt = zt + et,

where w1,w2 ∈ R64×64 were basis images shown in Fig-
ure 1 (f) (w1 on the left and w2 on the right), and {et} was a
noise sequence whose element was generated independently
by a zero-mean Gaussian with variance 10−2. Obviously the

3It is known that the nonnegativity itself encourages the sparsity in the
setting of NMF [17], but in our case, we need the explicit L1 regularization
because of the presence of the imaginary part.

(a) standard (b) total-ls (c) optimization

(d) nonneg (e) sparse-nonneg (f) ground truth

Fig. 1: (a–e) Estimated and (f) true dynamic modes (best
viewed on a display). The left of each panel corresponds to
w1 and the right corresponds to w2.

Table 1: Estimated and true eigenvalues.

λ1 λ2

standard 0.967 0.805
total-ls 0.969 0.825
optimization 0.967 0.805
nonneg 0.977 0.770
sparse-nonneg 0.996 0.891
ground truth 0.990 0.900

dynamic modes of the noise-free sequence {zt} are w1 and
w2 with eigenvalues 0.99 and 0.9, respectively. However, it is
not trivial how accurate we can estimate these dynamic modes
and eigenvalues from noisy sequence {yt}.

We input the noisy sequence to standard DMD (Algo-
rithm 1, referred to as standard), total-least-squares DMD
([16], total-ls), DMD as the block-multiconvex problem (Al-
gorithm 2, optimization), and the proposed method (Algo-
rithm 3) with n′ = 2. The proposed method is applied
with two settings: one with only the nonnegativity (nonneg)
and the other with both the sparsity and the nonnegativity
(sparse-nonneg). We set γ = 1 without any intensive search.
The estimation results are shown in Figure 1 and Table 1.
The proposed method, sparse-nonneg, gives the best estima-
tion among the methods listed above, in the sense that the
estimated dynamic modes (Figure 1 (e)) are not contami-
nated with much noise and the estimated eigenvalues are the
most accurate. Comparing the results of nonneg and those
of sparse-nonneg, we can suppose that the sparsity plays an
important role for estimation accuracy.

4.2. Extraction of part-based dynamic modes

Applying DMD to a video stream, we can expect that it will
be decomposed into multiple modes with different temporal
frequencies, wherein the “zero-frequency” mode corresponds
to the background and the other modes to the foreground.
The background/foreground separation has been studied in-
tensively; one of the popular solutions is the low-rank/sparse
decomposition such as robust PCA (RPCA) [29]. Moreover,
Kutz et al. [9] utilized DMD for this task. Here, note that



Fig. 2: Summary of the first 150 frames (6 secs) of AVSS AB Hard dataset [28] (displayed every 15 frames, i.e., 0.6 secs).

low-rank

sparse

(a) RPCA

0.000 [Hz] 0.094 [Hz]

0.283 [Hz] 0.534 [Hz]

(b) standard DMD

0.000 [Hz] 0.094 [Hz]

0.283 [Hz] 0.534 [Hz]

(c) SN-DMD

Fig. 3: Modal decomposition of AVSS AB Hard dataset video [28]. The upper panel of (a) and the upper-left panel of (b,c)
correspond to the static part (i.e., background) of the video. The other panels correspond to the moving part (i.e., foreground).

the advantage of DMD is that it can distinguish not only the
background and foreground, but also the components within
the foreground according to their temporal frequencies. We
address the task of foreground decomposition by DMD.

We used AVSS AB Hard dataset [28], which was a
surveillance video of a platform with moving people and
trains. As a preprocessing, we trimmed the first 251 frames
of the original sequence that were showing a title credit, re-
sized each frame into 192× 240 pixels and extracted the first
150 frames as a dataset. The example frames are shown in
Figure 2. To this dataset, we applied RPCA by fast principal
component pursuit [30], standard DMD (Algorithm 1), and
SN-DMD (Algorithm 3). The DMDs are computed with the
specified number of modes n′ = 7, and the regularization
parameter was set γ = 1 without any intensive search.

The time-averages of the low-rank and sparse compo-
nents extracted by RPCA are shown in Figure 3 (a), and
the dynamic modes and temporal frequencies4 extracted by
DMDs are shown in Figures 3 (b,c). From the viewpoint of
background/foreground separation, the background was suc-
cessfully extracted as the low-rank component by RPCA and
the zero-frequency dynamic modes by DMDs. In contrast,
the other modes (the sparse component by RPCA and the
nonzero-frequency dynamic modes) correspond to non-static
parts of the video, i.e. the foreground. As can be seen, peaks
(white regions) of the foreground modes correspond to the
regions where some moving objects passed. In Figure 3 (c),
the nonzero-frequency dynamic modes by SN-DMD are

4Frequency f [Hz] is calculated by f = Im(log λ)/(2π∆t) with
(discrete-time) eigenvalue λ and time interval ∆t [sec] between frames.

part-based in the sense that, for example, 0.094Hz-mode rep-
resents a standing person whereas 0.283Hz-mode represents
the train and some other people. On the other hand, in Fig-
ure 3 (b), the nonzero-frequency dynamic modes by standard
DMD have less distinctive spatial features; e.g., the region
corresponding to the train is activated both in 0.094Hz-mode
and in 0.283Hz-mode.

5. CONCLUSIONS

In this paper, we have reformulated DMD and proposed
sparse nonnegative DMD (SN-DMD), which directly imposes
the sparsity regularization and the nonnegativity constraint on
the structures of the estimated dynamic modes. In particu-
lar, SN-DMD can decompose a video with multiple moving
objects into a set of part-based dynamic modes, which is
analogous to the well-known results of NMF [17].

Using the proposed formulation, it is possible to impose
more complex regularizations and constraints. For example,
structured regularizations like fused-lasso and group-lasso
will be effective for highly-structured data. On the com-
putational efficiency, while we adopted the simple block-
coordinate descent, developing a more sophisticated solver is
necessary for dealing with large-scale datasets.
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[19] I. Mezić, “Analysis of fluid flows via spectral properties
of the Koopman operator,” Annual Review of Fluid Me-
chanics, vol. 45, pp. 357–378, 2013.

[20] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brun-
ton, and J. N. Kutz, “On dynamic mode decomposition:
Theory and applications,” J. of Computational Dynamics,
vol. 1, no. 2, pp. 391–421, 2014.

[21] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A
data-driven approximation of the Koopman operator: Ex-
tending dynamic mode decomposition,” J. of Nonlinear
Science, vol. 25, no. 6, pp. 1307–1346, 2015.

[22] Y. Kawahara, “Dynamic mode decomposition with re-
producing kernels for Koopman spectral analysis,” in
Advances in Neural Information Processing Systems,
vol. 29, pp. 911–919. 2016.
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[24] H. Arbabi and I. Mezić, “Ergodic theory, dynamic mode
decomposition and computation of spectral properties of
the Koopman operator,” arXiv:1611.06664v2, 2016.

[25] Y. Xu and W. Yin, “A block coordinate descent method
for regularized multiconvex optimization with applica-
tions to nonnegative tensor factorization and completion,”
SIAM J. on Imaging Sciences, vol. 6, pp. 1758–1789,
2013.

[26] D. C. Liu and J. Nocedal, “On the limited memory BFGS
method for large scale optimization,” Mathematical Pro-
gramming, vol. 45, pp. 503–528, 1989.

[27] J. D. Lee, Y. Sun, and M. A. Saunders, “Proximal
Newton-type methods for minimizing composite func-
tions,” in Advances in Neural Information Processing
Systems, vol. 25, pp. 827–835. 2012.

[28] IEEE Int. Conf. on Advanced Video and Signal
based Surveillance, “i-Lids dataset for AVSS 2007,”
http://www.eecs.qmul.ac.uk/˜andrea/
avss2007_d.html, 2007, [accessed 24-May-2017].

[29] E. J. Candés, X. Li, Y. Ma, and J. Wright, “Robust prin-
cipal component analysis?,” J. of the ACM, vol. 58, pp.
11:1–11:37, 2011.

[30] P. Rodriguez and B. Wohlberg, “Fast principal compo-
nent pursuit via alternating minimization,” in Proc. of
the 20th IEEE Int. Conf. on Image Processing, 2013, pp.
69–73.


