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Abstract. For secure and efficient operation of engineering systems, it is
of great importance to watch daily logs generated by them, which mainly
consist of multivariate time-series obtained with many sensors. This work
focuses on challenges in practical analyses of those sensor data: tem-
poral unevenness and sparseness. To handle the unevenly and sparsely
spaced multivariate time-series, this work presents a novel method, which
roughly models temporal information that still remains in the data. The
proposed model is a mixture model with dynamic hierarchical structure
that considers dependency between temporally close batches of obser-
vations, instead of every single observation. We conducted experiments
with synthetic and real dataset, and confirmed validity of the proposed
model quantitatively and qualitatively.

Keywords: multivariate time-series, unevenly spaced time-series, mix-
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1 Introduction

For secure and efficient operation of engineering systems, such as industrial
plants, vehicles and artificial satellites, it is of great importance to watch daily
logs generated by them. Those logs are useful for various tasks including fault de-
tection and isolation, maintenance prediction, and operation optimization. They
mainly consist of multivariate time-series obtained with many sensors equipped
to the system, and their amount keeps on increasing as the system goes on run-
ning. To deal with such sensor data with a machine learning approach, one can
utilize a statistical model that represents their characteristic behavior. For exam-
ple, state space models (SSM) have been widely used for multivariate time-series
like the sensor data obtained from engineering systems (see e.g. [7, 23]).

This work focuses on challenges in practical analyses of the sensor data: tem-
poral unevenness and sparseness. Practically, observation grid of the sensor data
is often unevenly and sparsely spaced as illustrated in Fig. 1(a), and it makes
the traditional models such as the SSM inappropriate. One of the challenges,
the temporal unevenness, is often the case not only with the sensor data of
the engineering systems but also with many kinds of scientific and industrial
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Fig. 1. Concepts of the intermittent multivariate time-series (IMT); (a) multivariate
time-series with a large part of observations missing (represented with dotted lines),
and (b) results of periodical surveys where observations in a single survey (enclosed by
the dotted square) are not ordered. The different colors denote different variables.

time-series. Many researchers have been studying on analyses of the unevenly
spaced time-series (see e.g. [12, 24, 20]), though the range of application is lim-
ited. With regard to another challenge, the temporal sparsity, the situation of
practical analyses can be tragic; the sampling rate of each sensor may vary from
a few seconds to several days, the measurements may be unsynchronized, and the
sensors may be stopped for a long time and restarted by event-driven measure-
ments. Moreover, data that contain faulty behaviors may not be utilized, which
leads to further loss of data and their temporal sequentiality. Consequently it is
quite difficult to model the whole sensor data as successive time-series. In the
following, we will refer to such unevenly and sparsely spaced sequential data as
intermittent multivariate time-series (IMT).

One of our motivating examples of the IMT is telemetry data obtained from
small artificial satellites. Generally, artificial satellites retrieve readings of hun-
dreds of sensors such as voltmeters, thermometers, accelerometers, gyroscopes,
and star sensors, as well as indicators of satellite’s status including on/off of
equipment, error flags, and operating modes. Hence the telemetry data from the
artificial satellites would be generated as multivariate time-series. With regard
to some satellites, however, the retrieved sensor readings are not always recorded
nor transmitted to the ground due to limitation of memory size and transmis-
sion capability. Therefore the telemetry data that we finally obtain are often
intermittent, that is, data series in interest are obtained at very low and uneven
sampling rates. This is especially true for small satellites and microsatellites,
and nanosatellites, which are expected to play a key role in space development.
An instance of an observation grid of the telemetry data obtained from a small
artificial satellite is shown in Fig. 2, whose vertical axis corresponds to different
sensor types and horizontal axis is along time. One can see that the white cells,
where measurement is recorded, are unevenly and sparsely placed.

An example of the IMT other than the sensor data is results of longitudinal
studies or periodical surveys. These data generally have temporal sequentiality
in some large scales such as years or decades, but observations in a single survey
do not have any temporal ordering. This property suits the idea of the IMT,
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Fig. 2. An observation grid of telemetry data obtained from a small satellite. The white
cells denote timestamps where a measurement was recorded, and the black cells are
ones where a measurement was not recorded. The rows represent different sensors, and
the columns are along time. One can see the data are unevenly and sparsely spaced.

in the sense that there occurs certain amount of observations intermittently, as
illustrated in Fig. 1(b).

This work presents a novel method to model the intermittent multivariate
time-series, which roughly captures temporal information of the data. The pro-
posed method is a mixture model with dynamic hierarchical structure that con-
siders dependency between temporally close batches of observations, instead of
every single observation. Our approach can be a useful option in practical sensor
data analyses, because it models correlation along time as well as correlation
among multiple variables (sensors), without evenly spaced measurements nor
interpolation of the data.

In the rest of this paper, related work is briefly reviewed in Sect. 2, the
proposed model is explained in Sect. 3, and experimental results are presented
in Sect. 4. This paper is concluded in Sect. 5.

2 Related Work

2.1 Discrete-time Latent Variable Models

With regard to evenly spaced multivariate time-series, one of the most widely
accepted models would be discrete-time state space models (SSM), which are
also referred to as linear dynamical system (LDS) or dynamic factor models (see
e.g. [7, 23]). State space models assume (often low-dimensional) continuous latent
factors with temporal correlation behind observations, and every observation is
conditionally independent given the latent factors. Another model often used
is hidden Markov models (HMM) and their variants such as factorial hidden
Markov models [9] and factor analyzed hidden Markov models [18], which assume
discrete latent variables with temporal dependency.

These models, in discrete time setting, are capable of dealing with the un-
evenly spaced time-series by skipping some measurement updates within filtering
procedures [12]. However, skipping too many measurements can cause a signifi-
cant bias on model estimation, especially when the sampling rate is very low or
a large part of observations is missing.

2.2 Processing of Unevenly Spaced Time-series

Many researches have explicitly focused on the unevenly spaced time-series. For
example, Zumbach and Müller presented some basic operators such as the mov-



ing average [24], and Erdogan applied the autoregressive model [5]. Some other
studies handled the unevenly spaced time-series with continuous-time models
(see e.g. [12, 3]). In astronomy, periodicity analysis of the unevenly spaced time-
series has been intensely discussed (see e.g. [20, 6]). Note that most of those
studies are on basic operators and models for univariate and stationary time-
series, and do not aim to handle the sensor data of engineering systems, which
are multivariate and possibly nonstationary as well as intermittent.

Another major way to deal with the unevenly spaced time-series is interpola-
tion.3 However, it has been pointed out that interpolation of time-series generates
a bias on statistic estimation (see e.g. [11, 17]). Moreover, interpolation does not
make much sense if an observation interval is too large.

2.3 Practical Alternative: Ignoring Temporal Dependencies

Practically there is a powerful alternative to model the IMT: just ignore the
temporal dependency and regard them as a set of i.i.d. observations! If we de-
cided to adopt this i.i.d. assumption, possible modeling approaches would be to
use latent variable models such as mixtures of Gaussian, the principal compo-
nent analysis (PCA), almost equivalently the factor analysis (FA), their mixture
versions [22, 8], the independent component analysis (ICA), the canonical corre-
lation analysis (CCA), Gaussian process latent variable models (GPLVM) [14],
restricted Boltzmann machines (RBM), and an autoencoder and its variants.

One justification of this compromise is that important information of the
sensor data lies in inter-variable (inter-sensor) relationships than in temporal
relationships. For example, if usually correlated sensors lose the correlation, a
failure of the system can be easily suspected. Moreover, learning the models
that assume i.i.d. observations is usually faster and less likely to be trapped in
local minima. Of course, such models will completely miss temporal information
of the data, but this drawback can be mitigated to some extend by methods
like moving average. Actually, the models with the i.i.d. assumption have been
widely used for sensor data analyses such as fault detection. See literatures [4,
13] for example, though there would be numerous similar cases in practice.

3 Dynamic Grouped Mixtures of Factor Analyzers

In the previous section, we briefly introduced some methods that can be used for
the unevenly spaced time-series. These would be useful in many applications, but
they mainly treat univariate time-series with a moderate range of observation
intervals, which is not the case with the IMT sensor data. We also mentioned
the practical compromise, that is, i.i.d. assumption. Although this is acceptable
in many cases, it wastes temporal information that still remains in the IMT.

In this section, we present a novel method that especially focuses on two
important characteristics of the IMT sensor data of engineering systems. First,

3 Detailed description on interpolation can be found in surveys such as [1, 17].
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Fig. 3. Graphical models of (a) mixtures of factor analyzers (MFA), and (b) dynamic
grouped mixtures of factor analyzers (DGMFA) for three time slices. Quantities other
than probabilistic variables are omitted to simplify the figure.

the IMT data maintain temporal information at some scale; while the time-
dependency at the finest level cannot be traced due to the sparseness, it can be
observed in a larger scale. For example, physical condition of satellites in orbits
around the earth gradually changes according to the revolution of the earth,
which can be observed with sensor data even if only a single measurement occurs
a day. Second, the sensor data of engineering systems often behave nonlinearly
because of physical phenomena, control laws and changes of operational modes.
The nonlinearity can be handled with nonlinear models or mixtures of linear
models, and we adopt the latter in this work.

The proposed model is a dynamical extension of mixture models. Our idea
presented below works with any types of mixture models, though we focus on
mixtures of factor analyzers (MFA) [8] for their simplicity and good performance
in this work. The MFA is a latent variable model with two types of latent vari-
ables z and x as shown in Fig. 3(a), where z denotes a cluster to which each
data point y belongs, and x is a low-dimensional representation behind each
data point y. For the details, see the literature [8].

3.1 Data Grouping

An essential procedure of the proposed method is grouping of the time-series.
We propose to partition the IMT data into multiple batches of data points,
on a scale where we would like to model the temporal correlation of the IMT
data. This time-series grouping can be formulated as follows: an observation ym

(m = 1, . . . ,M) is labeled with t (t = 1, . . . , T ) when the timestamp of ym is

within the range from τbegint to τ endt , where τbegint = τ endt−1. In this work, the

grouping interval is set evenly τ endt = τbegint + ∆ for a fixed value of ∆. Thus,

the amount of observations within the t-th group, Nt (
∑T

t=1 Nt = M), differs
for each t generally. A suitable granularity of the partition depends on nature of
the data and should be tuned empirically or with validation.

3.2 Generative Model

A data generation procedure of the proposed model for the t-th data-group can
be described as follows:



1. Sample a prior of cluster assignment ηt|ηt−1 ∼ N
(
ηt−1, Λ

)
.

2. For n = 1, . . . , Nt:
(a) Sample a cluster assignment zt,n|ηt ∼ Categorical (S (ηt)).
(b) Sample a latent factor xt,n,k ∼ N (0, I), where k = zt,n.
(c) Sample a data point yt,n|zt,n,xt,n,k ∼ N (Lkxt,n,k + bk, Ψk).

The subscript n denotes the number of a data point within a group (n =
1, . . . , Nt), and k is the number of clusters or mixture components (k = 1, . . . ,K).
The parameter Λ controls temporal transition of the cluster assignment priors
η, while the parameters {Lk, bk, Ψk} are a loading matrix, bias and residual
variance of the k-th factor analyzer, respectively. Note that S(·) is a softmax
function whose k-th element is denoted by Sk(·). A graphical model for proba-
bilistic variables of the proposed model is shown in Fig. 3(b). In the following,
we term this model dynamic grouped mixtures of factor analyzers (DGMFA).

3.3 EM Algorithm with Variational Approximation

An objective function to learn the DGMFA is a incomplete-data likelihood:

p
(
y1:T,1:N

)
=

∫
dη1:T

[
T∏

t=1

N
(
ηt;ηt−1, Λ

)
Nt∏
n=1

K∑
k=1

Sk (ηt)

∫
dxt,n,kN (0, I)N (Lkxt,n,k + bk, Ψk)

]
. (1)

As analytical maximization of this function is intractable, we adopt EM algo-
rithm with variational approximation closely related to one presented by [2],
which computes variational posteriors of η by Kalman filtering and smooth-
ing with variational pseudo observations. The most part of the algorithm is the
same with one presented in the literatures [2, 8]. Readers should be careful only
about an update procedure of variational parameters for z; they are updated
with Gaussian likelihoods of observation given an expectation of other latent
variables.

4 Experiments

We conducted three experiments with synthetic and real dataset: (1) Denoising
of synthetic time-series and (2) visualization and (3) anomaly detection of the
IMT sensor data of an artificial satellite.

4.1 Simulation: Denoising of Multivariate Time-series

To confirm validity of the proposed model quantitatively, we conducted denois-
ing experiments with synthetically-generated time-series. We prepared noise free
time-series {ȳ1, . . . , ȳM} and noised time-series {y1, . . . ,yM}, where

ym = ȳm + em where em ∼ N
(
0, ν2I

)
, (2)
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Fig. 4. One variable of the noised time-series generated by a linear dynamical system
and a Gaussian noise. Note that data actually used in the experiment is 8-dimensional.
(a) is the original time-series with no subsampling, and (b) is subsampled by rate of
0.2, i.e., 20% of observations was disposed.

form = 1, . . . ,M . Now the task is to recover the noise free time-series {ȳ1, . . . , ȳM}
from the noised time-series {y1, . . . ,yM}. We generated the noise-free time-series
by a linear dynamical system as follows:

xm =

[
−0.6 0.2
−0.1 0.5

]
xi−1 +wm for m = 2, . . . ,M,

ȳm = Axm,

where wi is a noise that follows N (0, 0.12I), and A is an 8× 2 emission matrix
whose elements were sampled randomly from N (0, I) independently. Therefore
the time-series were in 8 dimension, and the noised version was made following
(2) with ν = 0.1. We generated the data for 5000 timestamps and used 3000
timestamps for training, 1000 for validation and another 1000 for testing. The
intermittent situation was simulated by randomly subsampling the original time-
series, and its rate was varied from 0 (no subsampling) to 0.8 (80% of observations
was disposed). We showed a part of the generated time-series at Figs. 4(a) and
4(b), with different subsampling rates.

The parameters of the proposed model and other baselines were learned with
training set of data, model settings (the number of mixtures K and the number
of observation groups T ) were selected by a grid-search with the validation set.
Note that we do not need to select the latent dimension dx in this case, because
we know dx = 2 originally.

Denoising performances were evaluated using the test set of data. The per-
formances in terms of root mean squared errors are shown in Table 1 for different
models and different subsampling rates. As baseline, we tried some methods that
are widely used in practice: the hidden Markov model (HMM), the linear dynam-
ical system (LDS), the mixture of factor analyzers (MFA). The HMM and LDS
are learned skipping missing observations. One can confirm that the proposed
model, DGMFA, performed well even for high subsampling rates, while the LDS,
with which the original data were generated, failed with the high subsampling
rates. In Fig. 5, a part of denoising results and the ground truth are plotted for



Table 1. Denoising performances in RMS errors.

Subsampling rate HMM LDS MFA DGMFA

0 (no subsampling) 2.80× 10−1 1.29 × 10−1 1.77× 10−1 1.24 × 10−1

0.2 (20% disposed) 3.04× 10−1 1.30 × 10−1 1.69× 10−1 1.26 × 10−1

0.4 (40% disposed) 3.15× 10−1 1.39× 10−1 1.70× 10−1 1.25 × 10−1

0.6 (60% disposed) 3.19× 10−1 1.46× 10−1 1.98× 10−1 1.24 × 10−1

0.8 (80% disposed) 3.45× 10−1 2.13× 10−1 1.92× 10−1 1.25 × 10−1
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Fig. 5. A part of denoising results for test data with subsampling rate (s.r.) 0 and 0.2.

the LDS, MFA, and DGMFA. The simple MFA produced large errors at some
timestamps, while the DGMFA achieved the compatible result with the LDS.

4.2 Application: Visualization of Sensor Data

The task addressed in this section is to visualize sensor data of an artificial
satellite. It is indispensable to watch behaviors of an artificial satellite at all times
for secure operation, though it is a tremendous task for human operators since
the amount of the data is getting huge. Thus visualizing those data will be a great
help to see the picture of satellite’s behaviors. We adopted two unsupervised
learning techniques, clustering and dimensionality reduction, and tried to use
the MFA and the proposed model DGMFA.

The telemetry sensor data visualized here are obtained from SDS-4 [15],
which is an working small satellite operated by Japan Aerospace Exploration
Agency. The data contain sensor readings such as equipment’s voltage, current,
temperature. Their sampling rate varies approximately from one second to five
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Fig. 6. Visualization of sensor data with cluster assignment rates of each day learned
by MFA (left) and DGMFA (right). Each point corresponds to each day. The coloring
scheme is by satellite’s operational modes (upper) and chronological order (lower).

minutes and differs by sensors. Moreover, the observations are often missing for
a long period, approximately from 3 to 12 hours. The asynchrony was slightly
compensated by a zero-order hold that lasted up to only 10 seconds. We used
92 types of sensor readings that took continuous values in this experiment, i.e.,
the data were 92-dimensional intermittent time-series. Remember the fact that
satellite’s operation consists of a nominal mode and five types of experimental
modes, since it is emphasized in the following.

Model settings were empirically selected without any validation because the
aim of this experiment is just to show visualization capability of the proposed
model qualitatively. The data were partitioned into groups by days and the
period of the data is from 1 January 2015 to 30 June 2015, hence T = 183.
Consequently, the number of data points within a day was from 300 to 1300
approximately. The intrinsic dimensionality was set dx = 6 with an intrinsic
dimensionality estimator [10], and the number of the mixture components was
chosen empirically K = 10 just for visualization clarity.

Results of the visualization are presented in Fig. 6, where the left column is by
the simple MFA and the right is by its extension, DGMFA. Figure 6 was drawn
as follows. First, we calculated a cluster assignment rate of each group (day)
of the data:

∑
τbegin
t ≤timestamp(ym)<τend

t
E[zm] for MFA and E[ηt] for DGMFA,

from t = 1 to t = 183. It is a 10-dimensional quantity since the number of
clusters K was set to 10. Second, we further reduced the dimensionality of these
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Fig. 7. ROC curves of anomaly detection. The proposed model, DGMFA (yellow), is
compatible with the one-class SVM (blue) that is cheating in parameter tuning.

quantities with Sammon mapping [19] into two dimensions. Finally, we plotted
the results of the Sammon mapping with two types of coloring scheme. The plots
in the upper row of Fig. 6 are colored according to the six types of operational
modes of the satellite, and ones in the lower row are colored according to the
chronological order. Note that each point in these figures corresponds to each
day of satellite’s operation, because the data were partitioned by days.

In Fig. 6(d), the points along the horizontal axis are arranged by the color
gradation, i.e. approximately ordered by date. On the other hand, the points in
Fig. 6(c) are not ordered geometrically by the color (date) at all. This means
that the proposed model was more successful at learning the dynamical behavior
of the satellite than the classical MFA was. Since the horizontal axis in Figs. 6(b)
and 6(d) would denote chronological order (left to right) and the vertical axis
would correspond to operational modes of the satellite, it can be anticipated
that one of the experimental operation (denoted by orange points, referred to as
”Exp.1”) was not conducted after the end of March.

4.3 Application: Anomaly Detection

Another experiment was conducted with the telemetry sensor data obtained from
the satellite to quantitatively confirm availability of the proposed model. We
focused on semi-supervised anomaly detection, where models were trained using
data without anomalous behaviors, and another range of data that may contain
anomalies were tested by the trained models. We used the telemetry sensor data
during three months: a month for training, another month for validation, and
still another month for testing. It has been known that two anomalous (novel)
events occurred within the test range: one is an unexpected change of satellite’s
attitude, and another is a first-ever type of operation of the satellite. We expected
to detect these events with as few false alarms as possible.

The proposed model were compared with two practical baselines: one-class
SVM [21] and the MFA. The parameters of MFA and DGMFA were tuned using
the validation data that contain no anomalies, while this is suboptimal for the
detection task. On the other hand, the parameter of the one-class SVM was tuned



with cheating, that is, one with the best detection performance for the test data
was adopted. We investigated negative log likelihoods by the one-class SVM and
an absolute value of reconstruction errors by the MFA and DGMFA, and a part
of the data whose scores exceed a threshold was reported as an anomaly.

The detection performances in ROC curves are shown in Fig. 7, and AUC of
each curve is 0.8998 for the one-class SVM, 0.8307 for the MFA, and 0.9105 for
the DGMFA. Note that the proposed model was compatible with the one-class
SVM that is cheating in parameter tuning.

5 Conclusion

In this paper, we introduced a novel way to handle the multivariate intermittent
time-series (IMT), where observations were unevenly and sparsely spaced. The
proposed method consists of partitioning the time-series into multiple batches
of observations, and a model that roughly captures the temporal information
of the batches of observations. The partition is done on a scale in which the
temporal dependency can be observed even if finer-level information is lost. The
proposed model performed better than simple time-series models such as HMM
and LDS on a denoising task with the IMT data. Also, it successfully visualized
the sensor data obtained from an small artificial satellite, which are difficult to
model appropriately with standard time-series models or simple i.i.d. models.

One of the most demanding extensions to the method proposed in this work
is automatic partition of the data. The constant interval was adopted in this
work, though an optimal granularity of the partition is usually unknown and
may change in different parts of time-series.

It is noteworthy that the idea to set the dynamic priors on the cluster as-
signment of batches of observations is widely known because it was introduced
in the work on dynamic topic models (DTM) [2]. In the DTM, each word in a
document follows a mixture of multinomials and each document has a prior over
mixture component assignment, with the priors having temporal sequentiality.4

It shall be interesting to combine the proposed model with the DTM, which
would enable us to analyze the IMT sensor data and text simultaneously.
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