Learning Dynamics Models with Stable Invariant Sets

Naoya Takeishi (HES-SO/RIKEN), Yoshinobu Kawahara (KyushuU/RIKEN)

The 35th AAAI, February 2021

Problem Setting

- Estimate a model of (continuous-time) dynamical system $\dot{x} pprox f(x)$, $f: \mathcal{X}
 ightarrow \mathbb{R}^d$
 - i. given sequence $(\boldsymbol{x}_{t_1}, \boldsymbol{x}_{t_2}, \dots, \boldsymbol{x}_{t_m}), \ \boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^d$; OR
 - ii. given pairs of x and \dot{x}

Problem Setting

• Estimate a model of (continuous-time) dynamical system $\dot{x} pprox f(x)$, $f: \mathcal{X}
ightarrow \mathbb{R}^d$

- i. given sequence $(\boldsymbol{x}_{t_1}, \boldsymbol{x}_{t_2}, \dots, \boldsymbol{x}_{t_m}), \ \boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^d$; OR
- ii. given pairs of x and \dot{x}
- Ensuring the model's invariance & (asymptotic) stability

stable equilibrium

stable limit cycle

line attractor

Problem Setting

• Estimate a model of (continuous-time) dynamical system $\dot{x} pprox f(x)$, $f: \mathcal{X}
ightarrow \mathbb{R}^d$

- i. given sequence $(\boldsymbol{x}_{t_1}, \boldsymbol{x}_{t_2}, \dots, \boldsymbol{x}_{t_m}), \ \boldsymbol{x} \in \mathcal{X} \subset \mathbb{R}^d$; OR
- ii. given pairs of x and \dot{x}
- Ensuring the model's invariance & (asymptotic) stability

stable equilibrium

stable limit cycle

line attractor

- > useful if we have some prior knowledge of the target dynamics
- ➢ e.g., model should have a stable limit cycle for self-oscillating phenomena

• Let $\dot{x} = \hat{f}(x)$ be a base dynamics model (e.g., \hat{f} : neural net)

- Let $\dot{x} = \hat{f}(x)$ be a base dynamics model (e.g., \hat{f} : neural net)
- Modify \hat{f} so that equilibrium x = 0 becomes asymptotically stable:

 $\boldsymbol{f}(\boldsymbol{x}) = \begin{cases} \hat{\boldsymbol{f}}(\boldsymbol{x}) - \frac{\nabla V(\boldsymbol{x})^{\mathsf{T}} \hat{\boldsymbol{f}}(\boldsymbol{x})}{\|V(\boldsymbol{x})\|_{2}^{2}} \nabla V(\boldsymbol{x}), & \text{if } \nabla V(\boldsymbol{x})^{\mathsf{T}} \hat{\boldsymbol{f}}(\boldsymbol{x}) > 0, \\ \hat{\boldsymbol{f}}(\boldsymbol{x}), & \text{otherwise.} \end{cases}$

- Let $\dot{x} = \hat{f}(x)$ be a base dynamics model (e.g., \hat{f} : neural net)
- Modify \hat{f} so that equilibrium $\boldsymbol{x} = 0$ becomes asymptotically stable:

$$\boldsymbol{f}(\boldsymbol{x}) = \begin{cases} \hat{\boldsymbol{f}}(\boldsymbol{x}) - \frac{\nabla V(\boldsymbol{x})^{\mathsf{T}} \hat{\boldsymbol{f}}(\boldsymbol{x})}{\|V(\boldsymbol{x})\|_{2}^{2}} \nabla V(\boldsymbol{x}), & \text{if } \nabla V(\boldsymbol{x})^{\mathsf{T}} \hat{\boldsymbol{f}}(\boldsymbol{x}) > 0, \\ \hat{\boldsymbol{f}}(\boldsymbol{x}), & \text{otherwise.} \end{cases}$$

- $V: \mathcal{X} \to \mathbb{R}_{\geq 0}$ is *learnable* Lyapunov (candidate) function $V(\boldsymbol{x}) = \sigma \left(q(\boldsymbol{x}) - q(\boldsymbol{x}_{e})\right) + \varepsilon \|\boldsymbol{x} - \boldsymbol{x}_{e}\|_{2}^{2}$
 - $\succ q$: input-convex neural net [Amos+ 2017]
 - $\succ \sigma$: convex non-decreasing function
 - \blacktriangleright designed such that $V(\mathbf{x} = \mathbf{0}) = 0, V(\mathbf{x} \neq \mathbf{0}) > 0$

- Let $\dot{x} = \hat{f}(x)$ be a base dynamics model (e.g., \hat{f} : neural net)
- Modify \hat{f} so that equilibrium $\boldsymbol{x} = 0$ becomes asymptotically stable:

$$\boldsymbol{f}(\boldsymbol{x}) = \begin{cases} \hat{\boldsymbol{f}}(\boldsymbol{x}) - \frac{\nabla V(\boldsymbol{x})^{\mathsf{T}} \hat{\boldsymbol{f}}(\boldsymbol{x})}{\|V(\boldsymbol{x})\|_{2}^{2}} \nabla V(\boldsymbol{x}), & \text{if } \nabla V(\boldsymbol{x})^{\mathsf{T}} \hat{\boldsymbol{f}}(\boldsymbol{x}) > 0, \\ \hat{\boldsymbol{f}}(\boldsymbol{x}), & \text{otherwise.} \end{cases}$$

- $V: \mathcal{X} \to \mathbb{R}_{\geq 0}$ is *learnable* Lyapunov (candidate) function $V(\boldsymbol{x}) = \sigma \left(q(\boldsymbol{x}) - q(\boldsymbol{x}_{\mathrm{e}})\right) + \varepsilon \|\boldsymbol{x} - \boldsymbol{x}_{\mathrm{e}}\|_{2}^{2}$
 - $\succ q$: input-convex neural net [Amos+ 2017]
 - $\succ \sigma$: convex non-decreasing function
 - → designed such that $V(\mathbf{x} = \mathbf{0}) = 0, V(\mathbf{x} \neq \mathbf{0}) > 0$
- 🐵 We may want to handle more general stable invariant sets

- Problem: Learn dynamics model $\dot{x} = f(x)$ that has a stable invariant set $S \subset \mathcal{X}$
 - \succ We need to learn S at the same time
- Proposed dynamics model $\dot{x} = f(x) = \phi^{-1} \Big(\tilde{f}(\phi(x)) \Big)$

- Problem: Learn dynamics model *x* = *f*(*x*) that has a stable invariant set *S* ⊂ *X* We need to learn *S* at the same time
- Proposed dynamics model $\dot{x} = f(x) = \phi^{-1} \left(\tilde{f}(\phi(x)) \right)$

 \Rightarrow 1. Transform x to $z \in \mathcal{Z}$ using invertible map $\phi : \mathcal{X} \to \mathcal{Z}$

 \mathcal{X}

- Problem: Learn dynamics model $\dot{x} = f(x)$ that has a stable invariant set $S \subset \mathcal{X}$
 - \succ We need to learn S at the same time
- Proposed dynamics model $\dot{x} = f(x) = \phi^{-1} \Big(\tilde{f}(\phi(x)) \Big)$

1. Transform x to $z \in \mathcal{Z}$ using invertible map $\phi : \mathcal{X} \to \mathcal{Z}$

→ 2. Base dynamics model $\dot{z} = h(z)$

- Problem: Learn dynamics model $\dot{x} = f(x)$ that has a stable invariant set $S \subset \mathcal{X}$
 - \succ We need to learn S at the same time
- Proposed dynamics model $\dot{x} = f(x) = \phi^{-1} \Big(\tilde{f}(\phi(x)) \Big)$
 - 1. Transform x to $z \in \mathcal{Z}$ using invertible map $\phi : \mathcal{X} \to \mathcal{Z}$
 - 2. Base dynamics model $\dot{z} = h(z)$

⇒ 3. Modify
$$h(z)$$
 as $g(z)$ for ensuring stability of \tilde{S}
 $g(z) = \begin{cases} h(z), & z \in \tilde{S} \\ h(z) - \operatorname{step} (\nabla V(z)^{\mathsf{T}} h(z) + \alpha V(z)) \frac{\nabla V(z)^{\mathsf{T}} h(z) + \alpha V(z) + \eta(z)}{\|\nabla V(z)\|_{2}^{2}} \nabla V(z), & z \notin \tilde{S} \end{cases}$
where $V(z) = \sigma \left(q(z) - q(\mathbb{P}_{\tilde{S}} z) \right) + \varepsilon \|z - \mathbb{P}_{\tilde{S}} z\|_{2}^{2}$
projection of z to \tilde{S}

- Problem: Learn dynamics model $\dot{x} = f(x)$ that has a stable invariant set $S \subset \mathcal{X}$
 - \succ We need to learn S at the same time
- Proposed dynamics model $\dot{x} = f(x) = \phi^{-1} \Big(\tilde{f}(\phi(x)) \Big)$
 - 1. Transform x to $z \in \mathcal{Z}$ using invertible map $\phi : \mathcal{X} \to \mathcal{Z}$
 - 2. Base dynamics model $\dot{z} = h(z)$

3. Modify
$$h(z)$$
 as $g(z)$ for ensuring stability of \tilde{S}

$$g(z) = \begin{cases} h(z), & z \in \tilde{S} \\ h(z) - \operatorname{step} \left(\nabla V(z)^{\mathsf{T}} h(z) + \alpha V(z) \right) \frac{\nabla V(z)^{\mathsf{T}} h(z) + \alpha V(z) + \eta(z)}{\|\nabla V(z)\|_{2}^{2}} \nabla V(z), & z \notin \tilde{S} \end{cases}$$

 \Rightarrow 4. Modify g(z) as $\tilde{f}(z)$ for ensuring invariance of \tilde{S}

$$\tilde{\boldsymbol{f}}(\boldsymbol{z}) = \begin{cases} \boldsymbol{g}(\boldsymbol{z}), & C_{\tilde{\mathcal{S}}}(\boldsymbol{z}) \neq 0\\ \boldsymbol{g}(\boldsymbol{z}) - \frac{\nabla C_{\tilde{\mathcal{S}}}(\boldsymbol{z})^{\mathsf{T}} \boldsymbol{g}(\boldsymbol{z}) - \xi(\boldsymbol{z})}{\|C_{\tilde{\mathcal{S}}}(\boldsymbol{z})\|_{2}^{2}} \nabla C_{\tilde{\mathcal{S}}}(\boldsymbol{z}), & C_{\tilde{\mathcal{S}}}(\boldsymbol{z}) = 0 \end{cases}$$

- Problem: Learn dynamics model $\dot{x} = f(x)$ that has a stable invariant set $S \subset \mathcal{X}$
 - \succ We need to learn S at the same time
- Proposed dynamics model $\dot{x} = f(x) = \phi^{-1} \Big(\tilde{f}(\phi(x)) \Big)$
 - 1. Transform x to $z \in \mathcal{Z}$ using invertible map $\phi : \mathcal{X} \to \mathcal{Z}$
 - 2. Base dynamics model $\dot{z} = h(z)$

3. Modify
$$h(z)$$
 as $g(z)$ for ensuring stability of \tilde{S}

$$g(z) = \begin{cases} h(z), & z \in \tilde{S} \\ h(z) - \operatorname{step} \left(\nabla V(z)^{\mathsf{T}} h(z) + \alpha V(z) \right) \frac{\nabla V(z)^{\mathsf{T}} h(z) + \alpha V(z) + \eta(z)}{\|\nabla V(z)\|_{2}^{2}} \nabla V(z), & z \notin \tilde{S} \end{cases}$$

4. Modify g(z) as $\tilde{f}(z)$ for ensuring invariance of \tilde{S}

$$\tilde{\boldsymbol{f}}(\boldsymbol{z}) = \begin{cases} \boldsymbol{g}(\boldsymbol{z}), & C_{\tilde{\mathcal{S}}}(\boldsymbol{z}) \neq 0\\ \boldsymbol{g}(\boldsymbol{z}) - \frac{\nabla C_{\tilde{\mathcal{S}}}(\boldsymbol{z})^{\mathsf{T}} \boldsymbol{g}(\boldsymbol{z}) - \xi(\boldsymbol{z})}{\|C_{\tilde{\mathcal{S}}}(\boldsymbol{z})\|_{2}^{2}} \nabla C_{\tilde{\mathcal{S}}}(\boldsymbol{z}), & C_{\tilde{\mathcal{S}}}(\boldsymbol{z}) = 0 \end{cases}$$

→ 5. Project back from \mathcal{Z} to \mathcal{X} using $\phi^{-1} : \mathcal{Z} \to \mathcal{X}$

Data

Van der Pol oscillator

$$\dot{oldsymbol{x}} = egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \end{bmatrix} = egin{bmatrix} x_2 \ \mu(1 - x_1^2)x_2 - x_1 \end{bmatrix}$$

- \rightarrow vector field $f(\mathbf{x})$
- sequence example 1
- sequence example 2
- training data area

Data

Van der Pol oscillator

$$\dot{\boldsymbol{x}} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ \mu(1 - x_1^2)x_2 - x_1 \end{bmatrix}$$

- \rightarrow vector field $f(\mathbf{x})$
- sequence example 1
- sequence example 2
- training data area

Result (1/3)

Output from learned proposed model with:

- $\circ~$ unit circle as $\,\tilde{S}\,$
- $\circ~$ fully-connected NNs as \boldsymbol{h} and V

Result (2/3)

Long-term prediction

- neural ODE(without stability guarantee)
- proposed model(with stability guarantee)

Result (3/3)

learned $V(\mathbf{x})$ in proposed method

> learned V(x)without ϕ

Data 2-D fluid flow around cylinder-like object

- ➢ reaches limit cycle known as Kármán's vortex
- > training data taken *before* the limit cycle; test data taken *after* the limit cycle

Result Long-term prediction

Summary

- Learning dynamics model with general stable invariant set
- Realized by transforming state vector to latent state by invertible neural net
 - and ensuring stability and invariance in the latent space
- Useful when prior knowledge of target dynamics is available

