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* Ensuring the model’s invariance & (asymptotic) stability
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» useful if we have some prior knowledge of the target dynamics
» e.g., model should have a stable limit cycle for self-oscillating phenomena



Review: Dynamics model with stable equilibrium

[Manek & Kolter 2019]

* Let @ = f(x) be a base dynamics model (e.g., f : neural net)
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* Let @ = f(x) be a base dynamics model (e.g., f : neural net)

* Modify f so that equilibrium = = 0 becomes asymptotically stable:

IV ()3

fay = L) - VWil J2 gy (z), if VV(2)Tf(z) >0,
B f(w), otherwise.
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* Let = f(x) be a base dynamics model (e.g., f : neural net)

* Modify f so that equilibrium = = 0 becomes asymptotically stable:
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f (), otherwise.

« V:X = Ry islearnable Lyapunov (candidate) function
V(z) =0 (q(z) — q(xe)) + ¢l — zef5
» ¢ :input-convex neural net [Amos+ 2017]

» o :convex non-decreasing function
» designed such that V(z =0) =0, V(z #0) >0
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* Let = f(x) be a base dynamics model (e.g., f : neural net)

* Modify f so that equilibrium = = 0 becomes asymptotically stable:

) IV ()13
f(x), otherwise.

f(z) - {ﬂw) - TRV (), i V()T f(x) >0,

« V:X = Ry islearnable Lyapunov (candidate) function
V(z) =0 (q(z) — q(xe)) + ¢l — zef5
» ¢ :input-convex neural net [Amos+ 2017]

» o :convex non-decreasing function
» designed such that V(z =0) =0, V(z #0) >0

« ® We may want to handle more general stable invariant sets
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Proposed method

* Problem: Learn dynamics model & = f(x) that has a stable invariantset § C X

» We need to learn S at the same time

* Proposed dynamics model z = f(z) =¢* (f(qb(a:)))
1. Transform x to z € Z using invertible map ¢: X =+ Z
2. Base dynamics model z = h(z)

=>» 3. Modify h(z) as g(z) for ensuring stability of S

h’(z)a A S
9(z)= h(z) —step (VV(2)Th(z) + aV(z)) VV(Z)T?T(VZ‘)/JE:)‘H%(ZHW(Z) VV(z), z¢8
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Proposed method

* Problem: Learn dynamics model & = f(x) that has a stable invariantset § C X

» We need to learn S at the same time

* Proposed dynamics model z = f(z) =¢* (f(qb(a:)))
1. Transform x to z € Z using invertible map ¢: X =+ Z
2. Base dynamics model z = h(z)

3. Modify h(z) as g(z) for ensuring stability of S
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= 4. Modify g(z) as f(z) for ensuring invariance of S
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Proposed method

* Problem: Learn dynamics model & = f(x) that has a stable invariantset § C X

» We need to learn S at the same time

* Proposed dynamics model z = f(z) =¢* (f(qb(a:)))
1. Transform x to z € Z using invertible map ¢: X =+ Z
2. Base dynamics model z = h(z)

3. Modify h(z) as g(z) for ensuring stability of S

2) h(z), zeS
zZ)= T ~
g h(z) —step (VV (2)Th(z) + aV (z)) Y2 ﬁ%;@zw@ VV(z), 2¢8

4, Modify g(z) as f(z) for ensuring invariance of S

Cs(z) #0

=107 o
9(2) = T BT VCs(2), Cslz) =0

=» 5. Projectback from Z to X using¢™1: Z - X
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Experiment 1

Data

Van der Pol oscillator

—»  vector field f(x)

sequence example 1

— sequence example 2

r -1 training data area
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Result (1/3)

Output from learned proposed model with:

o unitcircleas S
o fully-connected NNsas h and V
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Experiment 1

Result (2/3)

Long-term prediction

f

11 neural ODE
1 H -~ vam Szd (without stability guarantee)
——+ propo
= proposed model

(with stability guarantee)

prediction error

100 200 300 400

# prediction steps
(1step At = .05)



Experiment 1

Result (3/3)

b2

value of V(x)

= = = truelimit cycle

learned V(x)
in proposed method

I

learned V(x)
without ¢

b
value of V(x)



Experiment 2

Data 2-D fluid flow around cylinder-like object
» reaches limit cycle known as Kd&rman's vortex

» training data taken before the limit cycle; test data taken after the limit cycle

Result Long-term prediction

Ground truth
Without any stability guarantee

Stable equilibrium [Manek&Kolter 19]

Proposed method
(with stable limit cycle)




Summary

e Learning dynamics model = s "o,
with general stable invariant set r T S Z‘%;—Z'igizj =7t
« Realized by transforming state vector e L )=t //:
to latent state by invertible neural net Lo \\\\_ / :
» and ensuring stability and invariance X ) 'd;/_;(@ ¢ = f(2) .

in the latent space

» Useful when prior knowledge of target
dynamics is available
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