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TL;DR For spectral analysis of dynamics based on the Koopman operator, features extracted using diffusion map have good properties in
the infinite-data regime. To improve the suboptimality in finite-data regime, we adjust the kernel function used in diffusion map by making the
diffusion operator commute with the Koopman operator as well as possible. We empirically confirmed that this strategy worked well.

What is the Koopman operator?

The Koopman operator represents a dynamical system. Using this, we can
analyze nonlinear dynamical systems using linear operator theories.

𝒇

𝒙𝑡

𝒙𝑡+1
Discrete-time dynamical system:

xt+1 = f (xt),
x ∈M state vector,
M state space, and
f : M →M transition map.

When f is nonlinear, analysis is challenging.

𝑔 𝒙

𝑈

𝑔 ∘ 𝒇 𝒙
Let g : M → R an observable on the state space,
in some Hilbert space, say g ∈ L2(M,µ).

The transition of g (instead of x) is described as

Ug(x) = g(f (x)).

U is a linear (but infinite-dimensional) operator
called the Koopman operator.

Koopman spectral analysis

By the spectral decomposition of Koopman operator, we can
extract quasi-periodic components of dynamics.

U tg(x) =

discrete spectra part︷ ︸︸ ︷∑
j

λtjϕj(x)cj(g) +

∫
σtEc(dσ)g(x)︸ ︷︷ ︸

continuous spectra part

λj ∈ C, ϕj : M → C eigenvalues and eigenfunctions of U
cj : L2(M,µ)→ C coefficients of g in span{ϕj} (modes)

A canonical usage Considering concatenation of multiple
observables, g = [g1 . . . gd] : M → Rd, watch modes {cj ∈ Cd}.

[Rowley+ 09] [Brunton+ 16] [Takeishi+ 17]

Data-driven computation

There are several data-driven methods for Koopman spectral
analysis. In this work, we focus on the use of diffusion map.

time-series data(
g(x0), g(x1), . . . , g(xT )

) {cj} Koopman modes
{λj} eigenvalues, and
{ϕj} eigenfunctions

↓ ↑
basis function [Williams+ 15]

kernel method [Kawahara 16]

neural network [Takeishi+ 17; etc.]

diffusion map [Giannakis 19; etc.]

→
dynamic mode

decomposition (DMD)

/ Galerkin method

feature extraction spectra computation

Review: Diffusion map A kernel integral operator P
called diffusion operator, which depicts the geometry of data
space, is computed and used for feature extraction [Coifman&Lafon 06].

Ph(x) :=

∫
M

k
(
g(x), g(x′)

)
d(x)

h(x′)µ(dx′)

Proposed method for kernel learning

We learn the kernel function k used in diffusion map so that the diffusion
operator commutes with the Koopman operator as well as possible.

Important fact In the infinite-data regime, P and U commutes. Hence,
their eigenspaces coincide, which is why the feature extraction using diffusion
map is good for Koopman spectral analysis [Giannakis 17,19; Giannakis&Das 19].
→ However, in the finite-data regime, this is not the case.

Proposed method We try to minimize the commutator ‖KU −UK‖,
where K is the unnormalized version of P , as their properties are common.

To this end, we use the fact ‖KU − UK‖ ≤ ‖D‖‖U‖, where D is defined as

Dh(x) :=

∫
M

(
k
(
g(f (x)), g(f (x′))

)
− k
(
g(x), g(x′)

))
h(x′)µ(dx′)

Finally, we solve

minimize
k

∑
t, t′

∣∣k(g(xt+1), g(f (xt′+1))
)
− k
(
g(xt), g(xt′)

)∣∣2 + βR(k),

where R(k) is a regularization term to prevent trivial solutions.

Numerical examples

Evaluated the error between estimation of
λ on large data and that on small data,
using k adjusted by the proposed method.

k was modeled as a linear combination
of some base kernels (i.e., multiple kernel
learning).
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(left) Torus data, (right) histogram of errors over random trials
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(left) Lorenz data, (right) histogram of errors over random trials


