Deep Grey-box Modeling With Adaptive Data-Driven Models Toward Trustworthy Estimation of Theory-Driven Models

Naoya Takeishi and Alexandros Kalousis

Geneva School of Business Management, University of Applied Sciences and Arts Western Switzerland (HES-SO)

Take-Home Messages

- Deep grey-box models = theory + DNN
- Not surprisingly, learning deep grey-box models needs **regularization**
- But... we don't know the property of regularizer = the property of the estimationof theory model parameters, θ_{T}
- We should empirically analyze the behavior of regularizers; to this end, marginalizing out θ_{T} helps

Grey-box Modeling

Combination of data-driven models (eg NNs) & theory-driven models (first principles or expert's experiences) may be advantageous in terms of:

- sample complexity;
- extrapolation performance;
- interpretability.

(Though, we don't really know... it is to be studied!)

We refer to such models as grey-box models.

Example For regression from x to y, a simple (yet useful) grey-box model is an additive model:

$$y = f_{\mathsf{T}}(x; \theta_{\mathsf{T}}) + f_{\mathsf{D}}(x; \theta_{\mathsf{D}}),$$

 $f_{\rm T}$: theory-driven model parameterized by $\theta_{\rm T}$, $f_{\rm D}$: data-driven model parametrized by $\theta_{\rm D}$.

We can represent *general* grey-box models as

 $y = C(f_{\mathsf{T}}, f_{\mathsf{D}}; x),$

where C is a functional that evaluates f_{T} and f_{D} on x and mixes their outputs in some way.

Learning **Deep** Grey-box Models Needs Regularization

Suppose that f_D is a universal approximator (eg DNN) and that the overall model C attains that property. Then, empirical risk minimization (ERM) cannot solely choose f_{T} 's parameter, θ_{T} .

Which regularizers should we use? \rightarrow depends on user's belief; to know the best one *a priori* is difficult. E.g., $R_{\text{normD}}(\theta_T, \theta_D) := ||f_D(x; \theta_D)||_{F_D}^2$ " f_D should act minimally in terms of norm"

 $R_{\text{corr}}(\theta_{\mathsf{T}}, \theta_{\mathsf{D}}) := |\langle f_{\mathsf{T}}, f_{\mathsf{D}} \rangle|$

Estimated value of θ_{T} matters (contrarily, value of θ_{D} does not really matter). = Property of R matters. Existence of clear minima? How many local minima? etc. (we don't know...)

Proposed Method: Deep Grey-box Models with Adaptive Data-Driven Models

- 4. (optional) Minimize $R(\theta_T, \theta_D^*)$ wrt. θ_T

Experiments

 $\partial u/\partial t = 0.0015\Delta u + u - u^3 - v + 0.005$ $\partial v / \partial t = 0.005 \Delta v + u - v.$

Task is to predict u, v for $t \in [1, 15]$ given u, v at t = 0. **Model** is $f_T + f_D$; $f_T = [a\Delta u, b\Delta u]$ (*a*, *b* unknown), and $f_{\rm D}$ is a CNN (whose filters parameterized also by $\theta_{\rm T}$).

Example Suppose $C(f_T, f_D; x) = f_T(x; \theta_T) + f_D(x; \theta_D)$ with loss $L(\theta_T, \theta_D) = \sum ||y - C(f_T, f_D; x)||_2^2$. If f_D is DNN, it can fit $y - f_T(x; \theta_T)$ for any θ_T ; the loss on a training set can be small to the same extent.

"Values of f_{T} and f_{D} should be uncorrelated" ... etc.

Minimizing $L(\theta_T, \theta_D) + \lambda R(\theta_T, \theta_D)$ may be troublesome. Instead, we suggest the following procedures: 1. Make f_D adaptive to the values of θ_T and $f_T(x; \theta_T)$; i.e., $f_D(x; \theta_T) \rightarrow f_D(x, \theta_T, f_T(x; \theta_T); \theta_D)$ 2. Minimize $\mathbb{E}_{p(\theta_T)}[L(\theta_T, \theta_D)]$ wrt. θ_D only; i.e., marginalize out θ_T

3. You can now evaluate the value of any R for any $\theta_T w/o$ re-training because f_D works adaptively to θ_T

Data are simulated from the 2D reaction-diffusion system:

Figure: Landscapes of regularizers. Axes correspond to α and b of f_{T} . By the way, the test RMSE is similarly small for any values of a, b.

Data are time-series population densities of prey (algae) and predator (rotifer). Task is to auto-encode the subsequences. **Model** is $f_T + f_D$; f_T is the Lotka–Volterra $(\alpha, \beta, \gamma, \delta \text{ unknown})$, and f_D is an MLP.

Figure: Landscape of R_{normD} at some timestep.

Discussions

- We don't suggest any regularizers; it needs to be discussed by practitioners
- Our suggestion provides a way for exploratory data analysis. Care must be taken so that data are not reused inappropriately
- A byproduct of the proposed formulation is the decoupled optimization of $\theta_{\rm D}$ and $\theta_{\rm T}$

References

[1] Y. Yin, V. Le Guen, J. Dona, E. de Bézenac, I. Ayed,
N. Thome, and P. Gallinari.
Augmenting physical models with deep networks for
complex dynamics forecasting.
In <i>ICLR</i> , 2021.
[2] Z. Qian, W. R. Zame, L. M. Fleuren, P. Elbers, and
M. van der Schaar.
Integrating expert ODEs into neural ODEs: Pharmacology
and disease progression.
In NeurIPS, pages 11364–11383, 2021.
[3] N. Takeishi and A. Kalousis.

- Physics-integrated variational autoencoders for robust and interpretable generative modeling. In NeurIPS, pages 14809–14821, 2021.
- [4] A. Wehenkel, J. Behrmann, H. Hsu, G. Sapiro, G. Louppe, and J.-H. Jacobsen. Robust hybrid learning with expert augmentation. TMLR, 2023.

Acknowledgements

This work was supported by Innosuisse (39453.1 IP-ICT) and SNSF Sinergia (CRSII5_177179) projects.

Contact

https://ntake.jp/ and http://dmml.ch/ Updated poster/paper, if any, is available there 😇