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Take-Home Messages

- Deep grey-box models = theory+DNN
- Not surprisingly, learning deep grey-box
models needs regularization
- But... we don’t know the property of reg-
ularizer= the property of the estimation
of theory model parameters, θT
- We should empirically analyze the be-
havior of regularizers; to this end,
marginalizing out θT helps

Grey-box Modeling

Combination of data-driven models (eg NNs) &
theory-driven models (first principles or expert’s
experiences) may be advantageous in terms of:
- sample complexity;
- extrapolation performance;
- interpretability.

(Though, we don’t really know... it is to be studied!)

We refer to such models as grey-box models.

Example For regression from  to y, a simple (yet
useful) grey-box model is an additive model:

y = ƒT(; θT) + ƒD(; θD),

ƒT: theory-driven model parameterized by θT,
ƒD: data-driven model parametrized by θD.

We can represent general grey-box models as

y = C(ƒT, ƒD; ),

where C is a functional that evaluates ƒT and ƒD
on  and mixes their outputs in some way.

Learning Deep Grey-box Models Needs Regularization

Suppose that ƒD is a universal approximator (eg DNN) and that the overall model C attains that property.
Then, empirical risk minimization (ERM) cannot solely choose ƒT’s parameter, θT.

Example Suppose C(ƒT, ƒD; ) = ƒT(; θT) + ƒD(; θD) with loss L(θT, θD) =
∑
‖y − C(ƒT, ƒD; )‖

2

2
.

If ƒD is DNN, it can fit y − ƒT(; θT) for any θT; the loss on a training set can be small to the same extent.

Which regularizers should we use? → depends on user’s belief; to know the best one a priori is difficult.

E.g., RnormD(θT, θD) := ‖ƒD(; θD)‖
2

FD
“ƒD should act minimally in terms of norm”

Rcorr(θT, θD) := |〈ƒT, ƒD〉| “Values of ƒT and ƒD should be uncorrelated” ... etc.

Estimated value of θT matters (contrarily, value of θD does not really matter).
= Property of Rmatters. Existence of clear minima? How many local minima? etc. (we don’t know...)

Proposed Method: Deep Grey-box Models with Adaptive Data-Driven Models

Minimizing L(θT, θD) + λR(θT, θD) may be troublesome. Instead, we suggest the following procedures:
1. Make ƒD adaptive to the values of θT and ƒT(; θT); i.e., ƒD(; θT)→ ƒD(, θT, ƒT(; θT); θD)

2. Minimize Ep(θT)[L(θT, θD)] wrt. θD only; i.e., marginalize out θT
3. You can now evaluate the value of any R for any θT w/o re-training because ƒD works adaptively to θT
4. (optional) Minimize R(θT, θ∗D) wrt. θT

Experiments

Data are simulated from the 2D reaction-diffusion system:

∂/∂t = 0.0015Δ+ − 
3 −  + 0.005,

∂/∂t = 0.005Δ + − .

Task is to predict ,  for t ∈ [1,15] given ,  at t = 0.
Model is ƒT + ƒD; ƒT = [Δ, bΔ] (, b unknown), and
ƒD is a CNN (whose filters parameterized also by θT).
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Figure: Landscapes of regularizers. Axes correspond to  and b of ƒT.
By the way, the test RMSE is similarly small for any values of , b.

Data are time-series population densities
of prey (algae) and predator (rotifer).
Task is to auto-encode the subsequences.
Model is ƒT + ƒD; ƒT is the Lotka–Volterra
(α, β, γ, δ unknown), and ƒD is an MLP.
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Figure: Landscape of RnormD at some timestep.

Discussions
- We don’t suggest any regularizers; it needs to
be discussed by practitioners
- Our suggestion provides a way for exploratory
data analysis. Care must be taken so that data
are not reused inappropriately
- A byproduct of the proposed formulation is the
decoupled optimization of θD and θT
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