Bayesian Dynamic Mode Decomposition

Naoya Takeishi[§], Yoshinobu Kawahara^{†,‡}, Yasuo Tabei[‡], Takehisa Yairi[§]

§Dept. of Aeronautics & Astronautics, The University of Tokyo †The Institute of Scientific and Industrial Research, Osaka University ‡RIKEN Center for Advanced Intelligence Project (AIP)

22 August 2017, IJCAI @ Melbourne

Motivation: Analysis of dynamical systems

Various types of complex phenomena can be described in terms of (nonlinear) dynamical systems.

$$oldsymbol{x}_{t+1} = oldsymbol{f}(oldsymbol{x}_t), \quad oldsymbol{x} \in \mathcal{M} ext{ (state space)}$$

 \odot When f is nonlinear, analysis based on trajectories of x is difficult.

Operator-theoretic view of dynamical systems

Definition (Koopman operator [Koopman '31, Mezić '05])

Koopman operator (composition operator) \mathcal{K} represents time-evolution of observables (i.e., observation function) $g: \mathcal{M} \to \mathbb{R}$ or \mathbb{C} .

$$\mathcal{K}g(x) = g(f(x)), \quad g \in \mathcal{F} \text{ (function space)}$$

- K describes temporal evolution of function (infinite-dimensional vector) instead of the finite-dimensional state vector.
- ▶ Defining K, we can *lift* the analysis of nonlinear dynamical systems into a linear (but infinite-dimensional) regime!

Koopman mode decomposition (KMD)

▶ Eigenvalues and eigenfunctions of *K*:

$$\mathcal{K} |\varphi_i(\boldsymbol{x})| = |\lambda_i| |\varphi_i(\boldsymbol{x})|$$
 for $i = 1, 2, \ldots$

▶ Projection of g(x) to span $\{\varphi_1(x), \varphi_2(x), \dots\}$ (i.e., transformation to a canonical form). \Rightarrow Coefficients are called *Koopman modes*.

$$g(\boldsymbol{x}) = \sum_{i=1}^{\infty} \varphi_i(\boldsymbol{x}) v_i$$

▶ Since φ is eigenfunction,

$$g(\boldsymbol{x}_t) = \sum_{i=1}^{\infty} \lambda_i^t \underbrace{\varphi_i(\boldsymbol{x}_0) v_i}_{w_i},$$
 (KMD)

where $|\lambda_i| =$ decay rate of w_i , $\angle \lambda_i =$ frequency of w_i .

► A numerical realization of KMD is *dynamic mode decomposition* (DMD) [Rowley+ '09, Schmid '10, Tu+ '14].

Dynamic mode decomposition (DMD)

Assumption (*K*-invariant subspace [Budišić+ '12])

Dataset is generated with a set of observables

$$m{g}(m{x}) = \begin{bmatrix} g_1(m{x}) & g_2(m{x}) & \cdots & g_n(m{x}) \end{bmatrix}^\mathsf{T}$$

that spans (approximately) \mathcal{K} -invariant subspace.

⇒ Then, KMD can be (approximately) realized by DMD.

Algorithm (DMD [Tu+ '14])

- 1. Estimate a linear model $y_{t+1} \approx Ay_t$.
- 2. On A, compute eigenvalues λ_i and right-/left-eigenvectors w_i , z_i^{H} .
- 3. Compute $\varphi_{i,t} = \boldsymbol{z}_i^{\mathsf{H}} \boldsymbol{y}_t$.

Quasi-periodic modes extraction by KMD/DMD

- ▶ Review: KMD/DMD computes the decomposition of time-series into modes w_i that evolve with frequency $\angle \lambda_i$ and decay rate $|\lambda_i|$.
 - w_i is termed dynamic modes.

$$oldsymbol{g}(oldsymbol{x}_t)pprox\sum_{i=1}^{\infty}oldsymbol{\lambda}_i^toldsymbol{w}_i$$

Example (2D fluid flow past a cylinder)

Flow past a cylinder is universal in many natural/engineering situations.

Other applications of KMD/DMD

- Lots of applications in a wide range of domains
 - fluid mechanics [Rowley+ '09, Schmid '10, & many more],
 - neuroscience [Brunton+ '16],
 - image processing [Kutz+ '16, Takeishi+ '17],
 - analysis of power systems [Raak+ '16, Susuki+ '16],
 - epidemiology [Proctor&Eckhoff '15],
 - optimal control [Mauroy&Goncalves '16],
 - finance [Mann&Kutz '16],
 - medical care [Bourantas+ '14],
 - robotics [Berger+ '15], etc.

Issue

- DMD relies on linear modeling $g(x_{t+1}) pprox Ag(x_t)$ and eigendecomposition of A.
- So it lacks an associated probabilistic/Bayesian framework, by which we can
 - consider observation noise explicitly,
 - perform a posterior inference,
 - consider DMD extensions in a unified manner, etc.
- Let's do it!
 - analogously to PCA's formulation as probabilistic/Bayesian PCA [Tipping&Bishop '99, Bishop '99]

Proposed method (1/2): Probabilistic DMD

Dataset: snapshot pairs with observation noise

$$\mathcal{D} = \left((oldsymbol{y}_{0,1}, oldsymbol{y}_{1,1}), \; \dots, \; (oldsymbol{y}_{0,t}, oldsymbol{y}_{1,t}), \; \dots, \; (oldsymbol{y}_{0,m}, oldsymbol{y}_{1,m})
ight),$$
 where $oldsymbol{y}_{0,t} = oldsymbol{g}(oldsymbol{x}_t) + e_{0,t}$ and $oldsymbol{y}_{1,t} = oldsymbol{g}(oldsymbol{x}_{t+\Delta t}) + e_{1,t},$

Definition (Generative model of probabilistic DMD)

$$\begin{cases} \boldsymbol{y}_{0,t} \sim \mathcal{CN}\left(\sum_{i=1}^{k} \varphi_{t,i} \boldsymbol{w}_{i}, \ \sigma^{2} I\right) \\ \boldsymbol{y}_{1,t} \sim \mathcal{CN}\left(\sum_{i=1}^{k} \lambda_{i} \varphi_{t,i} \boldsymbol{w}_{i}, \ \sigma^{2} I\right) \\ \varphi_{t,i} \sim \mathcal{CN}(0, \ 1) \end{cases}$$

 $\ \ \, \odot$ If k=n and $\sigma^2 \to 0$, the MLE of $(\lambda, {\boldsymbol w})$ coincides with DMD's solution.

Proposed method (2/2): Bayesian DMD

Definition (Prior on parameters for Bayesian DMD)

$$\mathbf{w}_{i}|v_{i,1:n}^{2} \sim \mathcal{CN}\left(\mathbf{0}, \operatorname{diag}\left(v_{i,1}^{2}, \ldots, v_{i,n}^{2}\right)\right), \quad v_{i,d}^{2} \sim \operatorname{InvGamma}\left(\alpha_{v}, \beta_{v}\right)$$

$$\lambda_{i} \sim \mathcal{CN}\left(0, 1\right)$$

$$\sigma^{2} \sim \operatorname{InvGamma}\left(\alpha_{\sigma}, \beta_{\sigma}\right)$$

© For a posterior inference, a Gibbs sampler can be constructed easily.

Extension example: Sparse Bayesian DMD

Definition (Prior on parameters for sparse Bayesian DMD)

$$\boldsymbol{w}_{i}|v_{i,1:n}^{2} \sim \mathcal{CN}\left(\mathbf{0}, \ \boldsymbol{\sigma^{2}} \operatorname{diag}\left(v_{i,1}^{2}, \ldots, v_{i,n}^{2}\right)\right), \quad v_{i,d}^{2} \sim \operatorname{Exponential}(\gamma_{i}^{2}/2)$$

$$\lambda_{i} \sim \mathcal{CN}\left(0, \ 1\right)$$

$$\boldsymbol{\sigma^{2}} \sim \operatorname{InvGamma}\left(\alpha_{\sigma}, \ \beta_{\sigma}\right)$$

© We can extend the model in a unified Bayesian manner.

Numerical example (1)

Example (Fixed-point attractor)

Generate data by

$$\mathbf{y}_t = \lambda_1^t \begin{bmatrix} 2 & 2 \end{bmatrix}^\mathsf{T} + \lambda_2^t \begin{bmatrix} 2 & -2 \end{bmatrix}^\mathsf{T} + \mathbf{e}_t,$$

where e is Gaussian observation noise.

True eigenvalues are $\lambda_1 = 0.9$ and $\lambda_2 = 0.8$.

Numerical example (2)

Example (Limit-cycle attractor)

Generate data from Stuart-Landau equation

$$r_{t+1} = r_t + \Delta t (\mu r_t - r_t^3),$$

$$\theta_{t+1} = \theta_t + \Delta t (\gamma - \beta r_t^2),$$

and Gaussian observation noise.

True (continuous-time) eigenvalues lie on the imaginary axis.

Analysis of dynamical systems based on **Koopman operator** is a useful tool.

Dynamic mode decomposition (DMD) is a numerical method for Koopman analysis.

In this work, we developed probabilistic & Bayesian DMDs to

- consider observation noise,
- infer posterior distribution,
- extend DMD in a unified manner, etc.

Implementation available at https://github.com/n-takeishi/bayesiandmd

$$\mathcal{K}g(\boldsymbol{x}) = g(\boldsymbol{f}(\boldsymbol{x}))$$

