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Motivation: Analysis of dynamical systems

» Various types of complex phenomena can be described
in terms of (nonlinear) dynamical systems.

xi = f(xy), x € M (state space)

® When f is nonlinear, analysis based on trajectories of x is difficult.
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Operator-theoretic view of dynamical systems

Definition (Koopman operator [Koopman 31, Mezié 05])

Koopman operator (composition operator) K represents time-evolution of
observables (i.e., observation function) g : M — R or C.

Kg(x) =g(f(x)), g€ F (function space)

» K describes temporal evolution of function (infinite-dimensional
vector) instead of the finite-dimensional state vector.

» Defining K, we can lift the analysis of nonlinear dynamical systems
into a linear (but infinite-dimensional) regime!

© Since K is linear, we can analyze dynamics using the spectra of K.
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Koopman mode decomposition (KMD)

» Eigenvalues and of K:
]C(pi(fﬁ) =\ @l(m) for i1=1,2,....

» Projection of g(x) to span{yi(x), p2(x),...} (i.e., transformation to a
canonical form). = Coefficients are called Koopman modes.

9(@) = pi(®) v,
=1

» Since ¢ is eigenfunction,
g(@) =Y A pi(@o)vi, (KMD)
= \W_/
where |)\;| = decay rate of w;, Z\; = frequency of w;.

» A numerical realization of KMD is dynamic mode decomposition
(DMD) [Rowley+ 09, Schmid 10, Tu+'14].
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Dynamic mode decomposition (DMD)

Assumption (/C-invariant subspace [Budisi¢+ '12])
Dataset is generated with a set of observables

-
9(@) = (@) o) - o)
that spans (approximately) K-invariant subspace.

= Then, KMD can be (approximately) realized by DMD.

Algorithm (DMD [tu+ 14])

Input time-series (yo, - -.,Ym) S.t. yr = g(=x;)
Output eigenvalues {\}, eigenfunctions {¢}, and modes {w}
1. Estimate a linear model y; 1 ~ Ay;.
2. On A, compute eigenvalues \; and right-/left-eigenvectors w;, z!.

3. Compute p;; = zHy;.
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Quasi-periodic modes extraction by KMD/DMD

» Review: KMD/DMD computes the decomposition of time-series into
modes w; that evolve with frequency Z\; and decay rate |\

w; is termed dynamic modes.

g(x) ~ Z A w;
i=1

Example (2D fluid flow past a cylinder)

Flow past a cylinder is universal in many natural/engineering situations.
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Other applications of KMD/DMD

» Lots of applications in a wide range of domains
fluid mechanics [Rowley+ 09, Schmid 10, & many more],
neuroscience [Brunton+ '16],
image processing [Kutz+ 16, Takeishi+ '17],
analysis of power systems [Raak+ 16, Susuki+ '16],
epidemiology [Proctor&Eckhoff '15],
optimal control [Mauroy&Goncalves '16],
finance [Mann&Kutz '16],
medical care [Bourantas+ '14],
robotics [Berger+ '15], etc.
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Issue

» DMD relies on linear modeling g(x:+1) ~ Ag(x:) and
eigendecomposition of A.

» So it lacks an associated probabilistic/Bayesian framework,
by which we can

consider observation noise explicitly,
perform a posterior inference,
consider DMD extensions in a unified manner, etc.

» Let'sdoit!

analogously to PCA’s formulation as probabilistic/Bayesian PCA
[Tipping&Bishop '99, Bishop '99]
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Proposed method (1/2): Probabilistic DMD

» Dataset: snapshot pairs with observation noise
D= ((yO,layl,l)v sy ( Yo,t , Y1t )7 ceey (yO,M7y1,m)) )

where yo;: =g(x:) +eor and  yi; = g(Tipar) + ey,

Definition (Generative model of probabilistic DMD)

Yo ~ CN (Zf:l Pt i W, 021)
Y10 ~CN (Zle AP iwi, 02[)
(Pt,i ~ CN(O, 1)

© If k = n and 0% — 0, the MLE of (), w) coincides with DMD’s solution.
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Proposed method (2/2): Bayesian DMD

Definition (Prior on parameters for Bayesian DMD)

w;|v} ., ~ CN (0, diag (v7y,...,v},)), viq~InvGamma (v, By)
Xi ~CN (0, 1)

o2 ~ InvGamma (o, Bs)

Uiz,lzn W Yo,t 2
O—0O<10 =’
k O Uyl,t m

© For a posterior inference, a Gibbs sampler can be constructed easily.
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Extension example: Sparse Bayesian DMD

Definition (Prior on parameters for sparse Bayesian DMD)

wi|vi2,1:n ~CN (O, o’diag (1)1-2’17 .. ,vin)) , vf’d ~ Exponential(ﬁ/Q)

A ~CN (0, 1)

o2 ~ InvGamma (o, Bs)

2
Viln mwi myO,t /Og

k Uyl,t m

© We can extend the model in a unified Bayesian manner.
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Numerical example (1)

Example (Fixed-point attractor)
Generate data by

T T
g = A [2 2} Y] [2 —2} te,
where e is Gaussian observation noise.
True eigenvalues are \; = 0.9 and A\, = 0.8.
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Numerical example (2)

Example (Limit-cycle attractor)
Generate data from Stuart-Landau equation

Ty = T + At(pr, — 7”?),
Ori1 = 0y + At(y — Bri),

and Gaussian observation noise.
True (continuous-time) eigenvalues lie on the imaginary axis.
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Analysis of dynamical systems based on Kg(x) = g(f(x))
Koopman operator is a useful tool.

Dynamic mode decomposition (DMD) is - ‘KI).D '

a numerical method for Koopman analysis. =
-.30'0150‘ 0 45 DI

In this work, we developed SR0pe T j)jm

probabilistic & Bayesian DMDs to
» consider observation noise,
» infer posterior distribution, =0 o 20)
» extend DMD in a unified manner, etc. k o Vi

2

Implementation available at
https://github.com/n-takeishi/bayesiandmd
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