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Motivation: Analysis of Nonlinear Dynamical Systems

I A variety of physical/biological phenomena are modeled
using dynamical systems (differential/difference eqs).

xt+1 = f (xt), x ∈ M (state space)
I When f is highly nonlinear, analyzing f is difficult.

Background: Operator-theoretic view of dynamical systems

I Definition (Koopman operator) [Koopman ’31]
. Koopman operator K is a linear operator that represents
time-evolution of observables g : M → C.

Kg(x) = g(f (x)), g ∈ F (function space)

I K lifts nonlinear dynamics to a linear regime!
. Can be utilized for modal decomposition, etc.

nonlinear linear (infinite-dim.)

I Assume K has only discrete spectra (eigenvalues).
I Definition (Koopman mode decomposition) [Mezić ’05, Budišić+ ’12]
. eigenvalues λ and eigenfunctions ϕ:

Kϕi(x) = λiϕi(x) for i = 1, 2, . . .

. g’s projection to span{ϕ1, ϕ2, . . . }: Koopman modes v

g(x) =

∞∑
i=1

ϕi(x)vi

. Then, g(xt) is decomposed into multiple modes:

g(xt) =

∞∑
i=1

λt
i ϕi(x0)vi︸ ︷︷ ︸

wi

,

{
|λi| = decay rate of wi

∠λi = frequency of wi.

Background: Dynamic Mode Decomposition (DMD)

I Algorithm (DMD) [Rowley+ ’09, Schmid ’10, Tu+ ’14]
1. Compute eigenvalues λi and right-/left-eigenvectors
wi, zH

i of A, where yt+1 ≈ Ayt.
2. Normalize eigenvectors so that wH

i′zi = δi′i.
3. Compute ϕi,t = zH

i yt.
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Figure 6
(Top panel ) Time evolution of a low-density helium jet. (Middle panel ) Koopman spectrum obtained using an
Arnoldi algorithm. Larger symbols correspond to larger-scale structures, and smaller ones to smaller-scale
structures. (Bottom panel ) Four Koopman modes, whose eigenvalues are numbered in the middle panel.
Figure taken from Schmid et al. (2011).

6. DISCUSSION AND CONCLUSIONS

In this review of the theory and applications of Koopman modes, we encounter a variety of ideas
and concepts in fluid mechanics that have been proposed and used to obtain collective motions of
fluid in the fully nonlinear regime, missing a common theoretical underpinning. Such concepts,
discussed above, are the global modes, triple decomposition, and DMD. The concept of Koopman
modes, derived from spectral properties of the infinite-dimensional, linear, Koopman operator
associated with a (linear or nonlinear) dynamical system, provides a unified theoretical background
for these concepts. In practice, the Koopman operator does not have to be realized to obtain the
modes. Indeed, the methods of computation of Koopman modes such as GLA and DMD deal with
snapshot sequences of the velocity field, whereas global mode analysis relies on the linearization
around the mean velocity field profile. This fact also enables these methods to be applied to PIV,
schlieren, and other fields obtained from experimental measurement.

The method for extracting Koopman modes, as deployed so far in fluid mechanics, is good for
flows with strong peaks in the spectrum, but flows with a broad spectrum need further resolution,
as shown, for example, by Muld et al. (2012), who compared POD and Koopman modes for the
flow around a surface-mounted cube that possibly has a continuous spectrum and did not find
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[Schmid+ ’11] [Brunton+ ’16] [Takeishi+ ’17]

I DMD approximates Koopman modes if dataset is
generated from appropriate nonlinear observables.

I Assumption (Data from K-invariant subspace)
. Dataset is generated by yt =

[
g1(xt), · · · , gn(xt)

]T, and
{g1, . . . , gn} spans K-invariant subspace, i.e.,
∃G ⊂ G s.t. ∀g ∈ G, Kg ∈ G and span{g1, . . . , gn} = G

I Previous approaches:
. transform data by nonlinear basis functions [Williams+ ’15]

. define Koopman mode decomposition in RKHS [Kawahara ’16]

Main Idea: Learning K-invariant Subspace from Data

I Theorem (K-invariant subspace)
. {g1, . . . , gn} spans a K-invariant subspace if and only if
g = [g1 · · · gn]T and g ◦ f are linearly dependent.

I Minimize residual sum of squares of linear least-squares
regression between g and g ◦ f :

LRSS(g;x0:m) = ‖Y1 − (Y1Y
†
0 )Y0‖2F,

Y0 = [g(x0) · · · g(xm−1)],

Y1 = [g(x1) · · · g(xm)]

I Modifications to loss function:
. Estimate x using delay-coordinate embedding [Takens ’81]:

xt ≈ x̃t = φ(yt−k+1:t) = W [yT
t−k+1 · · · yT

t ]
T

. Prevent trivial g by reconstructing y from g’s values:
h(g(x̃t)) ≈ yt → min Lrec =

∑
‖h(gt)− yt‖22

→ Total loss: L = L̃RSS(g,W ;y) + αLrec(g,h;y).
I Implementation using multilayer perceptrons:

�

�original time-series

. . . ,yt�k+1,yt�k+2, . . . ,yt,yt+1, . . .

x̃t

x̃t+1 g
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Numerical Examples and Application

Toy system

xt+1 = f (x) =

{
λx1,t,

µx2,t + (λ2 − µ)x21,t

I True K-inv. subspace: span{x1, x2, x21}.
I Proposed method can identify correct
eigenvalues even w/ noise.
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Unforced Duffing equation

ẍ = −δẋ− x(β + αx2)

I In general, the level sets of
Koopman eigenfunction with
eigenvalue λ = 1 correspond to
the basins of attraction.
(left): True basins of attraction.
(right): Computed eigenfunction.
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Unstable phenomena detection
I A mode with a small eigenvalue
corresponds to rapidly decaying
(unstable) component of data.

I Apply proposed method to
time-series of laser pulsation.

I Proposed method detects rapid
changes of amplitude.
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Figure 6: The left plot shows RMS errors from
1- to 30-step predictions, and the right plot
shows a part of the 30-step prediction obtained
by LKIS-DMD on (upper) the Lorenz-x series
and (lower) the Rossler-x series.
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Figure 7: The top plot shows the raw time-series
obtained by a far-infrared laser [45]. The other plots
show the results of unstable phenomena detection,
wherein the peaks should correspond to the occur-
rences of unstable phenomena.

We generated two types of univariate time-series by extracting the {x} series of the Lorenz attractor
[43] and the Rossler attractor [44]. We simulated 25,000 steps for each attractor and used the first
10,000 steps for training, the next 5,000 steps for validation, and the last 10,000 steps for testing
prediction accuracy. We examined the prediction accuracy of LKIS-DMD, a simple LSTM network,
and linear Hankel DMD [41], [42], all of whose hyperparameters were tuned using the validation set.
The prediction accuracy of every method and an example of the predicted series on the test set by
LKIS-DMD are shown in Figure 6. As can be seen, the proposed LKIS-DMD achieves the smallest
root-mean-square (RMS) errors in the 30-step prediction.

Unstable phenomena detection One of the most popular applications of DMD is the investigation
of the global characteristics of dynamics by inspecting the spatial distribution of the dynamic modes.
In addition to the spatial distribution, we can investigate the temporal profiles of mode activations by
examining the values of corresponding eigenfunctions. For example, assume there is an eigenfunction
ϕλ�1 that corresponds to a discrete-time eigenvalue λ whose magnitude is considerably smaller
than one. Such a small eigenvalue indicates a rapidly decaying (i.e., unstable) mode; thus, we can
detect occurrences of unstable phenomena by observing the values of ϕλ�1. We applied LKIS-DMD
(n = 10) to a time-series generated by a far-infrared laser, which was obtained from the Santa Fe
Time Series Competition Data [45]. We investigated the values of eigenfunction ϕλ�1 corresponding
to the eigenvalue of the smallest magnitude. The original time-series and values of ϕλ�1 obtained
by LKIS-DMD are shown in Figure 7. As can be seen, the activations of ϕλ�1 coincide with
sudden decays of the pulsation amplitudes. For comparison, we applied the novelty/change-point
detection technique using one-class support vector machine (OC-SVM) [46] and direct density-ratio
estimation by relative unconstrained least-squares importance fitting (RuLSIF) [47]. We computed
AUC, defining the sudden decays of the amplitudes as the points to be detected, which were 0.924,
0.799, and 0.803 for LKIS, OC-SVM, and RuLSIF, respectively.

7 Conclusion

In this paper, we have proposed a framework for learning Koopman invariant subspaces, which
is a fully data-driven numerical algorithm for Koopman spectral analysis. In contrast to existing
approaches, the proposed method learns (approximately) a Koopman invariant subspace entirely
from the available data based on the minimization of RSS loss. We have shown empirical results for
several typical nonlinear dynamics and application examples.

We have also introduced an implementation using multi-layer perceptrons; however, one possible
drawback of such an implementation is the local optima of the objective function, which makes
it difficult to assess the adequacy of the obtained results. Rather than using neural networks, the
observables to be learned could be modeled by a sparse combination of basis functions as in [23] but
still utilizing optimization based on RSS loss. Another possible future research direction could be
incorporating approximate Bayesian inference methods, such as VAE [34]. The proposed framework
is based on a discriminative viewpoint, but inference methodologies for generative models could be
used to modify the proposed framework to explicitly consider uncertainty in data.
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