

Background: Dynamic Mode Decomposition (DMD) Motivation: Analysis of Nonlinear Dynamical Systems Algorithm (DMD) [Rowley+ '09, Schmid '10, Tu+ '14] 1. Compute eigenvalues λ_i and right-/left-eigenvectors $oldsymbol{w}_i,\,oldsymbol{z}_i^{\mathsf{H}}$ of $oldsymbol{A}$, where $oldsymbol{y}_{t+1}pproxoldsymbol{A}oldsymbol{y}_t$. 2. Normalize eigenvectors so that $\boldsymbol{w}_{i'}^{\mathsf{H}} \boldsymbol{z}_i = \delta_{i'i}$. 3. Compute $\varphi_{i,t} = \boldsymbol{z}_i^{\mathsf{H}} \boldsymbol{y}_t$. A variety of physical/biological phenomena are modeled M using dynamical systems (differential/difference eqs). $\boldsymbol{x}_{t+1} = \boldsymbol{f}(\boldsymbol{x}_t), \quad \boldsymbol{x} \in \mathcal{M} \text{ (state space)}$ \blacktriangleright When **f** is highly nonlinear, analyzing **f** is difficult. [Schmid+ '11] [Brunton+ '16] Background: Operator-theoretic view of dynamical systems DMD approximates Koopman modes if dataset is **Definition** (Koopman operator) [Koopman '31] generated from appropriate nonlinear observables. \triangleright Koopman operator \mathcal{K} is a linear operator that represents ► Assumption (Data from *K*-invariant subspace) time-evolution of observables $g: \mathcal{M} \to \mathbb{C}$. ▷ Dataset is generated by $\boldsymbol{y}_t = [g_1(\boldsymbol{x}_t), \cdots, g_n(\boldsymbol{x}_t)]^T$, and $\mathcal{K}g(\boldsymbol{x}) = g(\boldsymbol{f}(\boldsymbol{x})), \quad g \in \mathcal{F}$ (function space) $\{g_1, \ldots, g_n\}$ spans *K*-invariant subspace, i.e., \triangleright \mathcal{K} lifts nonlinear dynamics to a linear regime! $\exists G \subset \mathcal{G} \text{ s.t. } \forall g \in G, \ \mathcal{K}g \in G \text{ and } \operatorname{span}\{g_1, \ldots, g_n\} = G$ Can be utilized for modal decomposition, etc. Previous approaches: transform data by nonlinear basis functions [Williams+ '15] \mathcal{M} define Koopman mode decomposition in RKHS [Kawahara '16] Numerical Examples and Application \mathcal{M} linear (infinite-dim.) nonlinear Toy system $\boldsymbol{x}_{t+1} = \boldsymbol{f}(\boldsymbol{x}) = \begin{cases} \lambda x_{1,t}, \\ \mu x_{2,t} + (\lambda^2 - \mu) x_{1,t}^2 \end{cases}$ \blacktriangleright Assume \mathcal{K} has only discrete spectra (eigenvalues). Definition (Koopman mode decomposition) [Mezić '05, Budišić+ '12] \triangleright eigenvalues λ and eigenfunctions φ : ► True \mathcal{K} -inv. subspace: span{ x_1, x_2, x_1^2 }. Proposed method can identify correct $\mathcal{K}\varphi_i(\boldsymbol{x}) = \lambda_i \varphi_i(\boldsymbol{x})$ for i = 1, 2, ...eigenvalues even w/ noise. $\triangleright g$'s projection to $\operatorname{span}\{\varphi_1,\varphi_2,\dots\}$: Koopman modes v

 $g(\boldsymbol{x}) = \sum_{i=1}^{\infty} \varphi_i(\boldsymbol{x}) v_i$

 \triangleright Then, $g(\boldsymbol{x}_t)$ is decomposed into multiple modes:

$$g(\boldsymbol{x}_t) = \sum_{i=1}^{\infty} \lambda_i^t \underbrace{\varphi_i(\boldsymbol{x}_0) v_i}_{w_i}, \quad \begin{cases} |\lambda_i| = \text{deca} \\ \angle \lambda_i = \text{frequencies} \end{cases}$$

Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition

ay rate of w_i juency of w_i .

Naoya Takeishi[§], Yoshinobu Kawahara^{†,‡}, Takehisa Yairi[§] [§]The University of Tokyo, [†]Osaka University, [‡]RIKEN Center for Advanced Intelligence Project (AIP)

[Takeishi+ '17]

Main Idea: Learning \mathcal{K} -invariant Subspace from Data

- **Theorem** (\mathcal{K} -invariant subspace) regression between \boldsymbol{g} and $\boldsymbol{g} \circ \boldsymbol{f}$:
 - $\mathcal{L}_{\mathsf{RSS}}(\boldsymbol{g};\boldsymbol{x}_{0:m}) = \|\boldsymbol{Y}_1 (\boldsymbol{Y}_1\boldsymbol{Y}_0^{\dagger})\boldsymbol{Y}_0\|_{\mathrm{F}}^2,$ $Y_0 = [g(x_0) \cdots g(x_{m-1})],$ $\boldsymbol{Y}_1 = [\boldsymbol{g}(\boldsymbol{x}_1) \cdots \boldsymbol{g}(\boldsymbol{x}_m)]$
- Modifications to loss function: \rightarrow Total loss: $\mathcal{L} = \widetilde{\mathcal{L}}_{RSS}(\boldsymbol{g}, \boldsymbol{W}; \boldsymbol{y}) + \alpha \mathcal{L}_{rec}(\boldsymbol{g}, \boldsymbol{h}; \boldsymbol{y}).$
- Implementation using multilayer perceptrons:

 $\dots, oldsymbol{y}_{t-k+1}, oldsymbol{y}_{t-k+2}, \dots, oldsymbol{y}_t, oldsymbol{y}_{t+1}, \dots$ original time-series

O LKIS

0.2 0.4 0.6 0.8

 $\operatorname{Re}(\lambda)$

× linear Hankel

basis exp.

w/ noise

-0.6 -0.4 -0.2 0

 $\overline{\langle}$ 0

 $\triangleright \{g_1, \ldots, g_n\}$ spans a \mathcal{K} -invariant subspace if and only if $\boldsymbol{g} = [g_1 \cdots g_n]^\mathsf{T}$ and $\boldsymbol{g} \circ \boldsymbol{f}$ are linearly dependent.

Minimize residual sum of squares of linear least-squares

 \triangleright Estimate x using delay-coordinate embedding [Takens '81]: $\boldsymbol{x}_t \approx \tilde{\boldsymbol{x}}_t = \boldsymbol{\phi}(\boldsymbol{y}_{t-k+1:t}) = \boldsymbol{W}[\boldsymbol{y}_{t-k+1}^\mathsf{T} \cdots \boldsymbol{y}_t^\mathsf{T}]^\mathsf{T}$ \triangleright Prevent trivial g by reconstructing y from g's values: $\boldsymbol{h}(\boldsymbol{g}(\tilde{\boldsymbol{x}}_t)) \approx \boldsymbol{y}_t \quad \rightarrow \quad \min \ \mathcal{L}_{\mathsf{rec}} = \sum \|\boldsymbol{h}(\boldsymbol{g}_t) - \boldsymbol{y}_t\|_2^2$ $\mathcal{L}_{\mathrm{RSS}}$

► A mode with a small eigenvalue corresponds to rapidly decaying (unstable) component of data. time-series of laser pulsation. Proposed method detects rapid