Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling

Naoya Takeishi, Alexandros Kalousis (University of Applied Sciences and Arts Western Switzerland, HES-SO)

We address grey-box modeling with deep generative models, particularly VAEs. Technical challenge is to strike a balance between theory-based mathematical (physics) models and data-driven models (i.e., neural nets). We propose a set of regularizers to prevent a physics model from being ignored and to ground the semantics of a part of latent variables by an incomplete physics model.

Deep grey-box modeling needs some regularization theory-based model data-driven model (physics, chemistry, biology, etc.)

Combining mathematical models based on scientific theories & data-driven models is known as grey-box modeling and can be advantageous in terms of interpretability, extrapolation, and learning efficiency. We consider grey-box modeling with deep neural networks being data-driven part. Particularly, we suppose that VAE's decoder comprises both an incomplete mathematical (physics) model and a neural net (physics-integrated VAE).

Issue: simply by ERM with –ELBO, physics model can be ignored 🛞

Suppress excess flexibility of neural net f_{NN} by minimizing difference between the full model (left) and a "physics-only" reduced model (right), which is created by replacing $f_{\rm NN}$ with some simple replacement function h (e.g., h(z) = Id, h(z) = Wz).

Ground the semantics of z_{Phys} with self-supervision by f_{Phys} . We can generate artificial data x^* from f_{Phys} , but it cannot be put into $g_{\rm Phys}$ directly because $f_{\rm Phys}$ is incomplete, and thus x^{\star} would have different nature from that of real data x. We try to avoid such difficulty by making the first stage of g_{Phys} output "physics-only" version of x. Let us consider two-stage structure $g_{Phys} = g_{Phys,2} \circ g_{Phys,1}$. We make $g_{Phys,1}(x)$ and $x_{reduced}$ close each other, where $x_{reduced}$ is created by giving $z_{\rm Phys}$ to the physics-only decoder.

Minimize $\mathbb{E}_{data} \| g_{Phys,1}(x) - \text{StopGrad} [x_{reduced}] \|_{2}^{2}$ and $\mathbb{E}_{z_{Phys}^{\star}} \| g_{Phys,2}(\text{StopGrad} [x^{\star}]) - z_{Phys}^{\star} \|_{2}^{2}$

<u> 圣中</u> //

Methods compared: NN-only

> Phys-only NN+solver

NN+phys

NN+phys+reg

Pendulum

Data generated from: $\ddot{\vartheta} + \omega^2 \sin\vartheta + b\dot{\vartheta} - A\omega^2 \cos(2\pi\phi t) = 0;$ 1000 sequences for training.

Model is physics-integrated VAE with decoder: $f_{\text{NN,2}}(\text{ODESolve}_{\vartheta}[f_{\text{Phys}}(\vartheta, z_{\text{Phys}}) + f_{\text{NN,1}}(\vartheta, z_{\text{NN}}) = 0], z_{\text{NN}})$ where $f_{\text{Phys}}(\vartheta, z_{\text{Phys}}) = \ddot{\vartheta} + z_{\text{Phys}}^2 \sin\vartheta$

Result (reconstruction / inference errors):

	Pendulum				Advection-diffusion			
	MAE of reconst.		MAE of inferred ω		MAE of reconst.		MAE of inferred a	
NN-only Phys-only NN+solver NN+phys NN+phys+reg	$\begin{array}{c} 0.438 \\ 1.55 \\ 0.439 \\ 0.370 \\ 0.363 \end{array}$	$(2.9 \times 10^{-2}) (7.1 \times 10^{-4}) (2.3 \times 10^{-2}) (4.3 \times 10^{-2}) (4.8 \times 10^{-2})$	0.232 1.04 0.229	$ \begin{array}{c} - \\ (5.9 \times 10^{-3}) \\ - \\ (2.2 \times 10^{-1}) \\ (3.8 \times 10^{-2}) \end{array} $	$\begin{array}{c} 0.0396 \\ 0.393 \\ 0.0388 \\ 0.0404 \\ 0.0437 \end{array}$	$(2.2 \times 10^{-4}) (9.5 \times 10^{-4}) (1.7 \times 10^{-4}) (1.2 \times 10^{-2}) (1.5 \times 10^{-3})$	0.0103 0.258 0.00951	$ \begin{array}{c} - \\ (1.5 \times 10^{-3}) \\ - \\ (3.2 \times 10^{-1}) \\ (6.2 \times 10^{-3}) \end{array} $
$\begin{array}{ccc} \alpha = 0 \\ \alpha = 0 \\ \beta = 0 \\ \gamma = 0 \end{array}$	$\begin{array}{c} 0.396 \\ 0.372 \\ 0.381 \end{array}$	$(4.3 \times 10^{-2}) (4.1 \times 10^{-2}) (4.1 \times 10^{-2})$	$0.889 \\ 0.223 \\ 0.276$	$(1.9 \times 10^{-1}) \\ (3.6 \times 10^{-2}) \\ (4.2 \times 10^{-2})$	$\begin{array}{c} 0.0461 \\ 0.0747 \\ 0.0588 \end{array}$	$(1.3 \times 10^{-2}) \\ (2.4 \times 10^{-2}) \\ (9.1 \times 10^{-4})$	$\begin{array}{c} 0.0444 \\ 0.199 \\ 0.0548 \end{array}$	$(1.4 \times 10^{-2}) \\ (2.3 \times 10^{-1}) \\ (9.4 \times 10^{-7})$

Galaxy images

Data comprise a certain class of galaxy; 400 images for training. Physics-integrated VAE comprises Gaussian light profile & U-net. Result (random generation):

NN+phys

Experiments

- vanilla VAE, decoder only with NN
- decoder only with physics model
- decoder with NN & corresponding solver
- (e.g., neural ODEs)
- decoder with NN & physics model, but without
- proposed regularization
- proposed method

Result ($0 \le t < 2.5$ reconstruction, $t \ge 2.5$ extrapolation):