Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
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Regularization 1: Suppressing excess flexibility of NN

We address grey-box modeling with deep generative
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1000 sequences for training.

Suppress excess flexibility of neural net fyn by minimizing
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data-driven model
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Regularization 2: Data augmentation by physics model

Result (0 < t < 2.5 reconstruction, t = 2.5 extrapolation):

<— reconstruction _extrapolation —
1 —
= 0 A\\\"// o P i
o 1 = i!“ *‘:d-

—2 H===Truth — - Phys-only s=s: NN+5D‘1‘HE[:.—NN+ph}-‘E+l'Eg RN,

Combining mathematical models based on scientific theories &
data-driven models is known as grey-box modeling and can be
advantageous in terms of interpretability, extrapolation, and
learning efficiency. We consider grey-box modeling with deep
neural networks being data-driven part. Particularly, we suppose
that VAE’s decoder comprises both an incomplete mathematical
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Result (reconstruction / inference errors):

(physics) model and a neural net (physics-integrated VAE). Pendulum Advection-diffusion
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Galaxy images

physics-integrated (V)AE Ground the semantics of zpyys With self-supervision by fpyys. We

can generate from fpphys, but it cannot be put
into gpnys directly because fpnys is incomplete, and thus
would have different nature from that of real data x.

Data comprise a certain class of galaxy; 400 images for training.

Physics-integrated VAE comprises Gaussian light profile & U-net.

Result (random generation):

We try to avoid such difficulty by making the first stage of gppys

x output . Let us consider two-stage
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ZPhys close each other, where Is created by giving Data NN-only

Zphys to the physics-only decoder.
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