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Grey-box [ Hybrid Modeling

theory-based model

(physics, chemistry, biology, etc.) data-driven model

m=mp efficient learning, partial interpretability, etc.

Can we do it for deep generative models?
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cf. Vanilla (V)AE
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Ez = g(x) Ez = f(2)
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Physics-Integrated VAEs

gNN S

Eznn = gan () .
Ez = .F[fNN; fphys; 2NN ZPhyS}
EZPhys — JPhys (iU)
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Physics-Integrated VAEs: Issue
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Physics part may be ignored
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Regularization (1)

Flexibility of trainable part should be somehow suppressed
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Regularization (1) cont'd

Minimize

original model

Exnn = 9NN($)
IIE{LZPhys — (JPhys (I)

Exr = F[fNN, fPhyS; ZNN ZPhys}

p(ﬁc | Xdata)
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Regularization (2)

NN fn h
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Physics part can also be used for
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Regularization (2)

NN fn h

T ' GPhys f Phys

%; o— =l
ZPhys Sy ~ P (2) <72

N

Physics part can also be used for
but x and x* would have different natures ®
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Regularization (2) cont'd
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Regularization (2) cont'd

fPhys / Treduced
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Experiment (1)

 Data: each data point = sequence of pendulum’s angle 9

9 + w?sinv =0

* Encoder = neural nets
* Decoder = fyn2( ODESolves| fonys(9, Zpnys) + fun1 (@ zan) = 0], znn )

where frhys (19, thys) =9+ Zghyssinﬁ

training dataisonly 0 <t < 2.5
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Experiment (2)

 Data: Images of galaxy

e Encoder = CNN

» Decoder = fyn(fenys(Zpnys), Zan)
- fyn = U-Net
— fpnys = Gaussian profile, zppys = [a, b, 0,1]
v a & b = semi-major/minor axes of ellipse, 6 =tilt, I = intensity

Data NN-only

NN+phys NN+phys+reg
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* In grey-box modeling with flexible ML models, one should be careful
so that physics models are not ignored

» We have presented the method for generative models
— applicable to non-additive combination of models
— similarly applicable to various types of generative models
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