Physics-Integrated Variational Autoencoders for Robust and **Interpretable** Generative Modeling

Naoya Takeishi and Alexandros Kalousis

University of Applied Sciences and Arts Western Switzerland (HES-SO)

@NeurIPS 2021

Haute Ecole Spécialisée de Suisse occidentale

University of Applied Sciences and Arts Western Switzerland

Grey-box / Hybrid Modeling

efficient learning, partial interpretability, etc.

Can we do it for deep generative models?

cf. Vanilla (V)AE

 $\mathbb{E}z = g(x) \qquad \qquad \mathbb{E}\hat{x} = f(z)$

Physics-Integrated VAEs

$$\mathbb{E}z_{\rm NN} = g_{\rm NN}(x)$$
$$\mathbb{E}z_{\rm Phys} = g_{\rm Phys}(x)$$
$$\mathbb{E}\hat{x} = \mathcal{F}[f_{\rm NN}, f_{\rm Phys}; z_{\rm NN}, z_{\rm Phys}]$$

Physics-Integrated VAEs: Issue

Physics part may be ignored

Regularization (1)

Flexibility of trainable part should be somehow suppressed

Regularization (1) cont'd

Regularization (2)

Physics part can also be used for data augmentation,

Regularization (2)

Physics part can also be used for data augmentation, but x and x^* would have different natures Θ

Regularization (2) cont'd

Regularization (2) cont'd

Experiment (1)

• Data: each data point = sequence of pendulum's angle ϑ

 $\ddot{\vartheta} + \omega^2 \sin\vartheta + b\dot{\vartheta} - A\omega^2 \cos(2\pi\phi t) = 0$

- Encoder = neural nets
- Decoder = $f_{\text{NN},2}$ (ODESolve_{ϑ} [$f_{\text{Phys}}(\vartheta, z_{\text{Phys}}) + f_{\text{NN},1}(\vartheta, z_{\text{NN}}) = 0$], z_{NN}) where $f_{\text{Phys}}(\vartheta, z_{\text{Phys}}) = \ddot{\vartheta} + z_{\text{Phys}}^2 \sin\vartheta$

Experiment (2)

- Data: Images of galaxy
- Encoder = CNN
- Decoder = $f_{NN}(f_{Phys}(z_{Phys}), z_{NN})$
 - $-f_{NN} = U-Net$
 - $f_{\text{Phys}} = \text{Gaussian profile}, z_{\text{Phys}} = [a, b, \theta, I]$

✓ a & b = semi-major/minor axes of ellipse, $\theta =$ tilt, I = intensity

Summary

- In grey-box modeling with flexible ML models, one should be careful so that physics models are not ignored
- We have presented the method for generative models
 - applicable to non-additive combination of models
 - similarly applicable to various types of generative models