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Two worlds

Scientific models Machine learning models
* Few parameters * Many parameters
* Scarce data * "Big” data
 Extrapolation  High adaptivity
* Domain knowledge * “Inductive bias”




Scientific models Machine learning models

* Few parameters * Many parameters
* Scarce data * "Big” data

* Extrapolation * High adaptivity
* Domain knowledge * “Inductive bias”

e Take the best of both worlds
* for better generalization

for extrapolation Y

for (partial) interpretability _:@:_ :@:ﬁ
* forinference with misspecified simulators

hopefully...




Hamiltonian neural nets [Greydanus+ 19
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figure from Greydanus+ 19

Greydanus+, Hamiltonian neural networks, NeurlPS 2019.


https://papers.nips.cc/paper_files/paper/2019/hash/26cd8ecadce0d4efd6cc8a8725cbd1f8-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/26cd8ecadce0d4efd6cc8a8725cbd1f8-Abstract.html

Hybrid disease progression model [Qian+ 2]

e Pharmacological model of disease progression
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e Combined with neural ODEs
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figure from Qian+ 21

Qian+, Integrating expert ODEs into neural ODEs: Pharmacology and disease progression, NeurlPS 2021.


https://proceedings.neurips.cc/paper/2021/hash/5ea1649a31336092c05438df996a3e59-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5ea1649a31336092c05438df996a3e59-Abstract.html

Neural rigid body dynamics [Heiden+ 21]

e Rigid body dynamics with contacts

e Replace friction model by neural nets
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figures from Heiden+ 21
Heiden+, NeuralSim: Augmenting differentiable simulators with neural networks, ICRA 2021



https://doi.org/10.1109/ICRA48506.2021.9560935
https://doi.org/10.1109/ICRA48506.2021.9560935

MPC with hybrid models [salzmann+ 23]

e Rigid body dynamics of drone
e and neural net to predict aerodynamic effects

e Model predictive control improved
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Salzmann+, Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms, IEEE RA-L, 2023.


https://doi.org/10.1109/LRA.2023.3246839
https://doi.org/10.1109/LRA.2023.3246839

Traffic queue length prediction [Shirakami+ 23]

e Feature extraction by GNN
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e Prediction of queue length using "sandglass mode
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Shirakami+, QTNet: Theory-based queue length prediction for urban traffic, KDD 2023.


https://dl.acm.org/doi/10.1145/3580305.3599890
https://dl.acm.org/doi/10.1145/3580305.3599890

Neural advection PDEs [Verma+ 24]

e Transport & compression of air: % = —v(t,x) - Vu(t,z) —u(t,x)V - v(t,x)

* Uu: some physical quantity (e.g., temperature)
« v:flow’'s velocity

e Learn dynamics of v with neural nets
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figure from Verma+ 24

video from the project page of Verma+ 24
https://yogeshverma19g8.github.io/ClimODE/

Verma+, ClimODE: Climate and weather forecasting with physics-informed neural ODEs, ICLR 2024.


https://openreview.net/forum?id=xuY33XhEGR
https://yogeshverma1998.github.io/ClimODE/
https://openreview.net/forum?id=xuY33XhEGR

Hybrid modeling in various domains

Digital Chemical Engineering 10 (2024) 100136

e Known and practiced for a long time
* chemical engineering
* health sciences

Contents lists available at ScienceDirect

Digital Chemical Engineering

journal homepage: www .elsevier.com/locate/dche

Review article
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::_::__h this topic, the capabilitics of hybrid models often scem and by othe
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https://doi.org/10.1016/j.dche.2023.100136

Hybrid model design patterns [e.g., Rudolph+ 24; Schweidtmann+ 24]

e "ML first”

* a.k.a. feature extraction / parametrization / submodeling /...

e "ML last”

* a.k.a. closures [ residual physics [ discrepancy modeling /A-ML/ ...

—_ }—Igﬂ —_ % — — % — @ —_—
e Scientific models should be (almost everywhere) differentiable
 world of differentiable simulators

original (non)identifiability
of scientific model matters

11


https://doi.org/10.1186/s13362-024-00141-0
https://doi.org/10.1016/j.dche.2023.100136

Differentiable simulators

e Scientific models should be (almost everywhere) differentiable
* must be implemented in a way facilitating differentiation functionality

e Challenges particularly with long rollout, discontinuity, and chaos

Hu et al. (2019) Geilinger et al. (2020) Du et al. (2021) Huang et al. (2021) Xu et al. (2021) Liet al. (2023)

Hu et al (2020) Lutter et al. (2021) Jatavallabhula et al. (2021) Heiden et al. (2021) Li et al. (2022)

|

Degrave et al. (2019)

figure from Newbury+24 (and references therein)
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https://arxiv.org/abs/2407.05560

(Non)identifiability matters

e Consider an "ML last” hybrid model, especially g being a deep neural net:

g
y=g(z, f(z;0); ¢) S . % —

e Regardless of the original identifiability, g makes all of 8 nonidentifiable
e Nonidentifiability of ¢ is sometimes fine in practice

e But 0 should be identified... €&
* they carry the semantics of the scientific model

13



Regularization for learning deep hybrid models

y=g(z, f(z;0); 9) T T % 7

e Because L(0, ¢p) := min L(6, ¢) ~ ¢ forany 8, empirical risk minimization:

z
min L(6, ¢)

alone does not make much sense

e With R(6, ¢) to measure “goodness” of hybridization, we should instead do

min L(0, ¢;) + AR(0, 6;)

e What R? €=

14



Hybrid neural ODES [Yin+ 2021]

e Physical (misspecified) model of dynamics f + correction by neural net g

d
y = ODEsolve d—j = f(s,x;0) + g(s,x; ¢)

e Suppress neural net'snorm: R = HgH%

e E.g., learning reaction-diffusion system
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Yin+, Augmenting physical models with deep networks for complex dynamics forecasting, ICLR 2021.
15


https://doi.org/10.1088/1742-5468/ac3ae5
https://doi.org/10.1088/1742-5468/ac3ae5

Hybrid VAES [Takeishi & Kalousis 21]

e VAE with hybrid decoder
— Q —
E %\
s — O =

e Minimize the difference between full model (above) and “reduced” model
* to make a reduced model, replace f with “null augmentation”: f = 0, f = Id, etc.

R=Dj]o

T & Kalousis, Physics-integrated variational autoencoders for robust and interpretable generative modeling, NeurIPS 2021.
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https://proceedings.neurips.cc/paper/2021/hash/7ca57a9f85a19a6e4b9a248c1daca185-Abstract.html

e VAE with hybrid decoder

e Data augmentation
* manipulate z (scientific model’s latent variable),

* generate new z, and
* use it for supervision of the encoder

17


https://proceedings.neurips.cc/paper/2021/hash/7ca57a9f85a19a6e4b9a248c1daca185-Abstract.html

Hybrid VAES [Takeishi & Kalousis 22

e E.g., controlled generation of galaxy images
f = exponential profile of light distribution; 8 = {intensity, size, angle}
g = anything else (colors, background, etc.)

Data NN-only
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https://proceedings.neurips.cc/paper/2021/hash/7ca57a9f85a19a6e4b9a248c1daca185-Abstract.html

e Principle of “least action” of correction term g
* minimize ||g||
* minimize ||g — Id||
* ©® needs definition of “least action”

e Scientific model f alone should predict as well as possible
* minimize |y — f(z)||
* maximize dependency between y and f(x)
 ® needs dissimilarity or dependency measure; not obvious when % and f () live in different spaces

e Two models, f and g, should work independently
* minimize (nonlinear) correlation of f(z) and g(z)
* ® needs dissimilarity measure; again not obvious necessarily

Total output should be sensitive enough to f(z)
* make d(go f)(x)/0f(x) large to some extent
* ©®towhat extent?

19



Choosing regularizer is hard [Takeishi & Kalousis 23]

e Choice of reqularizer solely depends on user’s belief: what's a good model?
* exploratory analysis might help

e Revisit: learning reaction-diffusion system data-generating value:
o O a=50x10"3b=15x10"3
data: E:aAu—l—u—u?’—k—v, a:bAu—f—u—v

model: y = ODEsolve | — = f(s,z;0) + g(s,x; })

S
dt
e Reqgularizer landscapes

Ruorm = ||9|l2, Reorr = [{f,g)|, and their combinations this only hits
the data-generating value

= Ruorm Reorr Ryorm + Reorr Rnorm * Reorr Validation set prediction error
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T & Kalousis, Deep grey-box modeling with adaptive data-driven models toward trustworthy estimation of theory-driven models, AISTATS 2023. 20


https://proceedings.mlr.press/v206/takeishi23a.html

Choosing regularizer is hard [Takeishi & Kalousis 23]

e For drawing the landscapes efficiently, we used an adaptive hybrid model:

ds

y = ODEsolve i f(s,x;0) 4+ g(s,x,stopgrad| f(s, x:0); )

to predict with any 8 without re-training

e During training, "marginalize out” 6 : minimize

R = Rnorm R RCOI‘I‘ Rnorm + RCOI‘I‘
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https://proceedings.mlr.press/v206/takeishi23a.html

Next challenge: Hybrid model architecture search

e Common assumptions
* we know how we should combine two models
* scientific model is (in a sense) not wrong; e.g., it does not contain irrelevant terms

e Dropping these assumptions, automatic architecture search would be beneficial

e Related work: hybrid model architecture search with LLMs [Holt+ 24]
* as code generation & refinement through interactions with human experts

Generation 1 Generation 2 oiia; o Generation 20 HDTwin

HDTwin

HDTwin

Actor LLM
b

Validation MSE Validation MSE
4.41 4.23

figure from Holt+ 24

Holt+, Automatically learning hybrid digital twins of dynamical systems, NeurlPS 2024.
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https://proceedings.neurips.cc/paper_files/paper/2024/hash/849b84c0038e5856f2887e5bfe6ced41-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/849b84c0038e5856f2887e5bfe6ced41-Abstract-Conference.html

Summary

e Hybrid modeling

* to take the best of both worlds: scientific models and machine learning

e Regularization
* minimize ||g||
* minimize ||y — f(z)|| ......

* designing a generic reqularizer is difficult

e Open questions
* architecture search
* analysis of when to hybridize
* more real applications
* bridge to related topics

* semiparametric models
* double machine learning

23



	スライド 1: Learning hybrid models combining scientific models and machine learning
	スライド 2: Two worlds
	スライド 3: Hybrid modeling
	スライド 4: Hamiltonian neural nets  [Greydanus+ 19]
	スライド 5: Hybrid disease progression model  [Qian+ 21]
	スライド 6: Neural rigid body dynamics  [Heiden+ 21]
	スライド 7: MPC with hybrid models  [Salzmann+ 23]
	スライド 8: Traffic queue length prediction  [Shirakami+ 23]
	スライド 9: Neural advection PDEs  [Verma+ 24]
	スライド 10: Hybrid modeling in various domains
	スライド 11: Hybrid model design patterns [e.g., Rudolph+ 24; Schweidtmann+ 24]
	スライド 12: Differentiable simulators
	スライド 13: (Non)identifiability matters
	スライド 14: Regularization for learning deep hybrid models
	スライド 15: Hybrid neural ODEs  [Yin+ 2021]
	スライド 16: Hybrid VAEs  [Takeishi & Kalousis 21]
	スライド 17: Hybrid VAEs  [Takeishi & Kalousis 21]
	スライド 18: Hybrid VAEs  [Takeishi & Kalousis 21]
	スライド 19: What regularizers to use?
	スライド 20: Choosing regularizer is hard  [Takeishi & Kalousis 23]
	スライド 21: Choosing regularizer is hard  [Takeishi & Kalousis 23]
	スライド 22: Next challenge: Hybrid model architecture search
	スライド 23: Summary

